我正在尝试使用FK合并两个数据框,并在两个日期之间合并,然后将输出保存在新的数据框中。
考虑以下示例:
# first_df
FK date value1 value2 ... (more columns)
1 2019-01-01 50 50
1 2019-01-02 40 80
1 2019-01-03 80 20
1 2019-01-04 18 44
1 2019-01-05 120 50
1 2019-01-06 80 0
1 2019-01-10 60 65
1 2019-01-15 25 44
1 2019-01-25 20 20
2 2019-01-01 50 40
2 2019-01-02 80 45
...............................
# second_df
FK date percentage
1 2019-01-01 50
1 2019-01-05 80
1 2019-01-10 40
1 2019-01-15 60
1 2019-01-25 90
2 2019-01-01 48
2 2019-01-08 40
2 2019-01-20 48
......................
# output_df
FK date value1 value2 ... (more columns)
1 2019-01-01 50% of 50 = 25 50% of 50 = 25
1 2019-01-02 50% of 40 = 20 50% of 80 = 40
1 2019-01-03 50% of 80 = 40 50% of 20 = 10
1 2019-01-04 50% of 18 = 9 50% of 44 = 22
1 2019-01-05 80% of 120 = 96 80% of 50 = 40
1 2019-01-06 80% of 80 = 64 80% of 0 = 0
1 2019-01-10 40% of 60 = 24 40% of 65 = 26
1 2019-01-15 60% of 25 = 15 60% of 44 = 26.4
1 2019-01-25 90% of 20 = 18 90% of 20 = 18
2 2019-01-01 48% of 50 = 24 48% of 40 = 19.2
2 2019-01-02 48% of 80 = 38.4 48% of 45 = 21.6
请注意,注意FK 2的第一条记录,索引是我的FK 。
该百分比应用于具有相同FK的所有记录,其中我的日期为: second_df.date <= first_df.date <和second_df.date_NEXT
例如,在2019-01-01和2019-01-04之间,我应用百分比50(来自second_df)
我一直在寻找一种干净且可读的实现方式...我知道我可以在fk上设置索引,并通过指定“ value1”列在我的df上使用apply。 但是,如果有超过5列的内容,您将如何处理?
希望您会了解我对大熊猫的了解很少
EDIT1
data1 = {'FK':[1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2],
'date':['2019-01-01', '2019-01-02', '2019-01-03', '2019-01-04', '2019-01-05', '2019-01-06', '2019-01-10', '2019-01-15', '2019-01-25', '2019-01-01', '2019-01-02'],
'value1':[50, 40, 80, 18, 120, 80, 60, 25, 20, 50, 80]}
data2 = {'FK': [1, 1, 1, 1, 1, 2, 2],
'date': ['2019-01-01', '2019-01-05', '2019-01-10', '2019-01-15', '2019-01-25', '2019-01-01',
'2019-01-08'],
'percentage': [50, 80, 40, 60, 90, 48, 40]}
df1 = pd.DataFrame(data1)
df2 = pd.DataFrame(data2)
merged_df = pd.merge_asof(df1.sort_values('date'), df2.sort_values('date'), by='FK', on='date').sort_values('FK')
使用上述数据集发生了意外:Function call with ambiguous argument types
如果您有此异常,这是因为您的列“ on”(在我的情况下为FK)不被视为日期,而是字符串。
根据熊猫文档:[...]Furthermore this must be a numeric column, such as datetimelike, integer, or float.
答案 0 :(得分:3)
在您的情况下,我们使用from functools import wraps
from django.http import HttpResponseBadRequest, JsonResponse
def query_params(*param_names):
def decorator(func):
@wraps(func)
def inner(request, *args, **kwargs):
try:
params = {name: request.GET[name] for name in param_names}
except KeyError:
return HttpResponseBadRequest("Missing Parameter")
kwargs.update(params)
return func(request, *args, **kwargs)
return inner
return decorator
@query_params("part")
def get_part_info(request, part):
# do something with part
return JsonResponse({"result": part})
merge_asof
然后我们在同一df中有df=pd.merge_asof(df1.sort_values('date'),df2.sort_values('date'),by='FK',on='date').sort_values('FK')
和值,我们可以做多个
percentage