我正在运行TF2教程,并将代码完全复制到.py文件中,然后在PyCharm中运行它,但收到以下错误消息:
Testing started at 12:50 AM ...
/home/martin/nlp/my-env/tf/bin/python /home/martin/.local/share/JetBrains/Toolbox/apps/PyCharm-C/ch-0/193.5233.109/plugins/python-ce/helpers/pycharm/_jb_pytest_runner.py --path /home/martin/tf2-tutorial/cnn_mnist.py
Launching pytest with arguments /home/martin/tf2-tutorial/cnn_mnist.py in /home/martin/tf2-tutorial
============================= test session starts ==============================
platform linux -- Python 3.7.1, pytest-5.3.1, py-1.8.0, pluggy-0.13.1 -- /home/martin/nlp/my-env/tf/bin/python
cachedir: .pytest_cache
rootdir: /home/martin/tf2-tutorial
collecting ... collected 1 item
cnn_mnist.py::test2_step ERROR [100%]
test setup failed
file /home/martin/tf2-tutorial/cnn_mnist.py, line 60
@tf.function
def test_step(images, labels):
E fixture 'images' not found
> available fixtures: cache, capfd, capfdbinary, caplog, capsys, capsysbinary, doctest_namespace, monkeypatch, pytestconfig, record_property, record_testsuite_property, record_xml_attribute, recwarn, tmp_path, tmp_path_factory, tmpdir, tmpdir_factory
> use 'pytest --fixtures [testpath]' for help on them.
为什么认为它是pytest程序?为什么会发出此错误消息?该教程应“按原样”运行。
下面是本教程中复制的代码(精确副本):
from __future__ import absolute_import, division, print_function, unicode_literals
import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
# Add a channels dimension
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]
train_ds = tf.data.Dataset.from_tensor_slices(
(x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)
class MyModel(Model):
def __init__(self):
super(MyModel, self).__init__()
self.conv1 = Conv2D(32, 3, activation='relu')
self.flatten = Flatten()
self.d1 = Dense(128, activation='relu')
self.d2 = Dense(10, activation='softmax')
def call(self, x):
x = self.conv1(x)
x = self.flatten(x)
x = self.d1(x)
return self.d2(x)
# Create an instance of the model
model = MyModel()
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()
optimizer = tf.keras.optimizers.Adam()
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
predictions = model(images)
loss = loss_object(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
@tf.function
def test_step(images, labels):
predictions = model(images)
t_loss = loss_object(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
EPOCHS = 5
for epoch in range(EPOCHS):
for images, labels in train_ds:
train_step(images, labels)
for test_images, test_labels in test_ds:
test_step(test_images, test_labels)
template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
print(template.format(epoch+1,
train_loss.result(),
train_accuracy.result()*100,
test_loss.result(),
test_accuracy.result()*100))
# Reset the metrics for the next epoch
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
这可能是由于PyCharm环境问题引起的吗?但这一切正常吗?