在AutoML H2O上使用balance_classes会生成错误“ java.lang.IllegalArgumentException:采样期间出错-点数太少?”

时间:2019-12-10 18:22:15

标签: h2o sampling

在AutoML H2O上使用balance_classes会产生错误“ java.lang.IllegalArgumentException:采样期间出错-点数太少?”

我正尝试使用启用了nfolds = 5且启用balance_classes的AutoML H2O模型来训练多类问题:

数据帧上有三个不同的标签:

target           Count
-------------  -------
não conhecido     3789
não provido      11039
provido           3225

[3 rows x 2 columns]

所有模型都失败,并显示消息“ java.lang.IllegalArgumentException:采样期间出错-点数太少?”。

我认为要点太少。有人可以解释这个问题吗?

使用的参数:

        include_algos = ["DRF", "GBM", "StackedEnsemble"],
        seed=1234,
        nfolds = nfolds,
        balance_classes = True,
        max_runtime_secs = 86400,
        max_models=8,
        max_runtime_secs_per_model = 1200,
        keep_cross_validation_predictions = True,
        verbosity = "debug",

日志:

Executando o treinamento do modelo do problema < tipo_decisao >...
AutoML progress: |
02:51:01.681: Project: automl_py_488_sid_932d
02:51:01.681: AutoML job created: 2019.12.10 02:51:01.680
02:51:01.681: Disabling Algo: DeepLearning as requested by the user.
02:51:01.682: Disabling Algo: XGBoost as requested by the user.
02:51:01.682: Disabling Algo: GLM as requested by the user.
02:51:01.682: Build control seed: 1234
02:51:01.706: training frame: Frame key: automl_training_py_488_sid_932d    cols: 1225    rows: 18053  chunks: 200    size: 192349542  checksum: 7379304490974335888
02:51:01.706: validation frame: NULL
02:51:01.706: leaderboard frame: NULL
02:51:01.706: blending frame: NULL
02:51:01.706: response column: target
02:51:01.706: fold column: null
02:51:01.706: weights column: null
02:51:01.737: Setting stopping tolerance adaptively based on the training frame: 0.007442610801832542
02:51:01.799: AutoML build started: 2019.12.10 02:51:01.799

█
02:51:04.812: Default Random Forest build failed: java.lang.IllegalArgumentException: Error during sampling - too few points?

██
02:51:07.831: GBM 1 failed: java.lang.IllegalArgumentException: Error during sampling - too few points?

██
02:51:10.844: GBM 2 failed: java.lang.IllegalArgumentException: Error during sampling - too few points?

██████
02:51:14.878: GBM 3 failed: java.lang.IllegalArgumentException: Error during sampling - too few points?

███
02:51:18.897: GBM 4 failed: java.lang.IllegalArgumentException: Error during sampling - too few points?

███
02:51:19.915: GBM 5 failed: java.lang.IllegalArgumentException: Error during sampling - too few points?

███
02:51:22.954: Extremely Randomized Trees (XRT) Random Forest build failed: java.lang.IllegalArgumentException: Error during sampling - too few points?
02:51:22.954: AutoML: starting GBM hyperparameter search

████████████████████████████████████| 100%

02:51:41.57: No models were built, due to timeouts or the exclude_algos option. StackedEnsemble builds skipped.
02:51:41.57: AutoML build stopped: 2019.12.10 02:51:41.57
02:51:41.57: AutoML build done: built 0 models
02:51:41.57: AutoML duration: 39.258 sec

1 个答案:

答案 0 :(得分:0)

我检查了源代码,但由于观察到的内容太少,所以看起来不太像。

您能否仅运行启用了余额类的单个GBM模型并提供H2O日志? http://docs.h2o.ai/h2o/latest-stable/h2o-docs/logs.html#logging-in-python

我不太确定当前的日志是否会为我们提供足够的信息来解决这个问题,但是我将进行更改以在下一个版本中添加更多的信息。