大家晚上好
我对for循环的构造感到困惑,我没有任何问题,但是我想了解如何创建数据帧“独立”(具有某些区别的重复)。
我一步一步地编写了代码(它可以工作),但是我认为也许可以用for压缩代码。
x
是我的原始数据。
str(x)
Classes ‘data.table’ and 'data.frame': 13500 obs. of 6 variables:
$ a: int 1 56 1058 567 987 574 1001...
$ b: int 10 5 10 5 5 10 10 5 10 10 ...
$ c: int NA NA NA NA NA NA NA NA NA NA ...
$ d: int 0 0 0 0 0 0 0 0 0 0 ...
$ e: int 0 0 0 0 0 0 0 0 0 0 ...
$ f: int 22 22 22 22 22 22 22 22 22 22 ...
我的首要目标是删除每一列最终的NA和“”元素。我通过这些行代码来做到这一点。
x_b<- x[!(!is.na(x$b) & x$b==""), ]
x_c<- x[!(!is.na(x$c) & x$c==""), ]
x_d<- x[!(!is.na(x$d) & x$d==""), ]
x_e<- x[!(!is.na(x$e) & x$e==""), ]
x_f<- x[!(!is.na(x$f) & x$f==""), ]
此后的第二个目标是为每个新数据创建一个我使用功能paste0(x_b$a, x_b$f)
创建的ID代码。
x_b$ID_1<-paste0(x_b$a, x_b$b)
x_c$ID_2<-paste0(x_c$a, x_c$c)
x_d$ID_3<-paste0(x_c$a, x_c$d)
x_e$ID_4<-paste0(x_c$a, x_c$e)
x_f$ID_5<-paste0(x_c$a, x_c$f)
我创建了这个for循环,以尝试最小化我使用的行,并创建良好的代码可视化。
z<-data.frame("a", "b","c","d","e","f")
zy<-data.frame("x_b", "x_c", "x_d", "x_e", "x_f")
for(i in z) {
for (j in zy ) {
target <- paste("_",i)
x[[i]]<-(!is.na(x[[i]]) & x[[i]]=="") #with this I able to create a column on the x data.frame,
#but if I put a new dataframe the for doesn't work
#the name, but I don't want this. I'd like to create a
#data.base per each transformation.
#at this point of the script, I should have a new
#different dataframe, as x_b, x_c, x_d, x_e, x_f but I
#don't know
#How to create them?
#If I have these data frame I will do this anther function
#in the for loop:
zy[[ID]]<-paste0(x_b$a, "_23X")
}
}
我希望将其输出为:
str(x_b)
Classes ‘data.table’ and 'data.frame': 13500 obs. of 6 variables:
$ a: int 1 56 1058 567 987 574 1001...
$ b: int 10 5 10 5 5 10 10 5 10 10 ...
$ c: int NA NA NA NA NA NA NA NA NA NA ...
$ d: int 0 0 0 0 0 0 0 0 0 0 ...
$ e: int 0 0 0 0 0 0 0 0 0 0 ...
$ f: int 22 22 22 22 22 22 22 22 22 22 ...
$ ID: int 1_23X 56_23X 1058_23X 567_23X 987_23X 574_23X 1001_23X...
,依此类推。
我认为我想念的数据框有一些重要概念。
我在哪里错了?
非常感谢您的支持。
答案 0 :(得分:0)
使用tidyverse
软件包有一种简单的方法:
第一个目标:
drop.na(df)
如果要将na_if
转换为""
,也可以使用NA
。
第二个目标:使用mutate
创建一个新变量:
df <- df %>%
mutate(id = paste0(x_b$a, "_23X"))