使用输入规范生成SAS代码

时间:2019-12-09 06:55:28

标签: excel vba automation sas

我们有一组在SAS中开发的预定义宏,可用于使用SAS数据集生成表,列表和图形。我的要求是专门为表自动生成SAS代码。有一些固定数量的模板可用于生成表。此外,还可以使用SAS程序来生成每个表的输出。每当需要从这些模板生成表时,都需要修改相关的SAS程序以生成所需的输出。

为避免每次分别编写SAS程序来生成固定类型的输出的冗余,我想创建一个将生成SAS代码的工具。此代码将用作生成表的源。

我准备了一个excel工作簿,其中包含构建程序所需的所有详细信息(例如各种参数及其值,例如标题,脚注,源数据集,按行/列分组)。在Excel中创建的简单用户表单用于显示和配置这些参数。

现在的问题是-如何使用Excel VBA生成SAS语句?以及如何使用Excel VBA与SAS连接以执行SAS程序?

如果您之前已经做过类似的事情,或者对这种类型的问题陈述有任何想法,请在这里分享。任何帮助都是非常有意义的。

谢谢。

1 个答案:

答案 0 :(得分:1)

我不会涉及VBA。我将编写一个SAS程序来读取需求,生成表并将它们推回到新的Excel程序中。如果您想从Excel程序中完全驱动它,我建议您使用Excel的SAS加载项而不是VBA代码,尽管您可以通过VBA触发它。克里斯·海米丁格(Chris Hemidinger)是这类问题的SAS专家,他确实在community.sas.com上发帖,因为另一个用户指示您应该在此处发帖(以评论形式)。

创建空表是一个微不足道的过程,但是报表表通常具有非常特定的布局,因此您可以进一步概括该过程。例如,我有一个宏可以为数据集创建我的标准表1(特性表),在这里我只需要按类型(连续,分类,二进制)指定输入变量,就可以生成输出并将其推送通过ODS EXCEL脱颖而出。我还使用PROC REPORT对其进行格式化,因为我将为不同的变量交替地对行进行阴影处理,以便于阅读/显示。

/*
This macro creates a table of charateristics for the variables listed.  
It handles categorical, binary and continuous variables and produces and output dataset that can be further customized. No statistical information is
included in this analysis
*/

/*Parameters to be set:
dsetin - name of dataset to be analyzed
cont = macro variable list of variable names, ie cont=age weight height
cat=list of categorical variables ie cat=sex grade
bin=binary variables, such as smoking now, smoking ever
dsetout=name of output dataset
Run example at the end for a sample output dataset call sample_table_char in the work directory
*/


*options mprint symbolgen;
%macro table_char(dsetin, cont, cat, bin, dsetout);


*delete old dataset;

proc datasets nodetails nolist;
    delete &dsetout;
quit;

/****************************************************************
Handle Categorical Variables
****************************************************************/

*loop through variable list;
%let i=1;
%do %while (%scan(&cat, &i, " ") ^=%str());
%let var=%scan(&cat, &i, " ");  

*Get format for variable;
data _null_;
 set &dsetin;
 call symput("var_fmt", vformat(&var));
run;



proc freq data=&dsetin noprint;
    table &var/missing out=tab_var;
run;



data temp1;
    length categorical $200.; format categorical $200.;
    length value $200.; format value $200.;

    set tab_var;
    percent=percent/100;
    categorical=put(&var., &var_fmt.);
    if _n_=1 then do;
        value=put(count, 8.)||"("||compress(put(percent, percent8.1))||")";
        order=2;
        output;
        order=1;
        value='';
        categorical=propcase(vlabel(&var.));
        output;
    end;
    else do;
        order=2;
        value=put(count, 8.)||"("||compress(put(percent, percent8.1))||")";
        output;

    end;

    keep categorical value order;
run;

proc sort data=temp1 out=temp2 (drop=order); by order categorical; run;


proc append base=&dsetout data=temp2;
run;

*clean up;

proc datasets nodetails nolist;
    delete tab_var temp1 temp2;
run; quit;

*Increment counter;
%let i=%eval(&i+1);
%end; *Categorical;

/****************************************************************
Handle Continuous Variables
****************************************************************/

%let i=1;
%do %while (%scan(&cont, &i, " ") ^=%str());
%let var=%scan(&cont, &i, " "); 



proc means data=&dsetin (rename=&var=vn) noprint;
var vn;
output out=table_var n= nmiss= mean= min= max= std= median= p25= p75= p90=/autoname;
run;

*get label of variable for clean reporting;
data _null_;
 set &dsetin;
 call symput("var_label", vlabel(&var));
run;




data temp1;
    length categorical $200.; format categorical $200.;
    format value $200.; length value $200.;

    set table_var;

    categorical="&var_label.";
    value=.;
    output;

    categorical='Count(Missing)';
    value=put(vn_n, 5.)||"("||compress(put(vn_nmiss, 5.))||")";
    output;

    categorical='Mean (SD)';
    value=put(vn_mean, 8.1)||"("||compress(put(vn_stddev, 8.1))||")";
    output;

    categorical='Median (IQR)';
    value=put(vn_median, 8.1)||"("||compress(put(vn_p25, 8.1))||" - "||compress(put(vn_p75, 8.1))||")";
    output;

    categorical='Range';
    value=put(vn_min, 8.1)||" - "||compress(put(vn_max, 8.1));
    output;

    categorical='90th Percentile';
    value=put(vn_p90, 8.1);
    output;



    keep categorical value;
run;


proc append base=&dsetout data=temp1;
run;

*clean up;

proc datasets nodetails nolist;
    delete table_var temp1;
run; quit;

*Increment counter;
%let i=%eval(&i+1);
%end; *Continuous;

/*****************************************************************
Handle Binary Variables (only report 1s)
*****************************************************************/

%let i=1;
%do %while (%scan(&bin, &i, " ") ^=%str());
%let var=%scan(&bin, &i, " ");  



proc freq data=&dsetin noprint;
    table &var/missing out=tab_var;
run;

data tab_var;
    set tab_var;
    where &var=1;
run;

data temp1;
    length categorical $200.; format categorical $200.;
    length value $200.; format value $200.;

    set tab_var;
    percent=percent/100;
    if _n_=1 then do;
        value=put(count, 8.)||"("||compress(put(percent, percent8.1))||")";
        order=1;
        categorical=propcase(vlabel(&var.));
        output;
    end;
    keep categorical value;
run;




proc append base=&dsetout data=temp1;
run;

*clean up;

proc datasets nodetails nolist;
    delete tab_var temp1;
run; quit;

*Increment counter;
%let i=%eval(&i+1);
%end;*Binary;


%mend table_char;


/* *Example of macro usage; */
/* data sample; */
/*  set sashelp.class; */
/*  female=ifn( sex='F',1,0); */
/* run; */
/*  */
/*  */
/* %table_char(sample, height weight age, sex, female, sample_table_char); */