hiya很高兴我一直在为大学做这个图像分类器项目,而我一直在如何使用模型和使用什么代码方面遇到麻烦,如果我做的一切正确,我一直在阅读此书,但我仍然不知道为什么我会不断出错https://keras.io/applications/#vgg16
我使用这些代码
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
from PIL import ImageFile, Image
from tensorflow import keras
print(Image.__file__)
import numpy
import matplotlib.pyplot as plt
# dimensions of our images.
img_width, img_height = 200, 200
train_data_dir = r'C:\Users\Acer\imagerec\Brain\TRAIN'
validation_data_dir = r'C:\Users\Acer\imagerec\Brain\VAL'
nb_train_samples = 140
nb_validation_samples = 40
epochs = 20
batch_size = 5
if K.image_data_format() == 'channels_first':
input_shape = (1, img_height, img_width)
else:
input_shape = (img_height, img_width, 1)
from keras.applications.densenet import DenseNet121
from keras.models import Model
from keras.layers import Dense
MN = keras.applications.densenet.DenseNet121(include_top=False,
weights='imagenet', input_tensor=None, input_shape=None,
pooling='avg', classes=1000)
x = MN.output
x = Dense(1, activation='sigmoid')(x)
model = Model(MN.input, x)
model.summary()
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=nb_validation_samples // batch_size)
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
import seaborn as sns
test_steps_per_epoch = numpy.math.ceil(validation_generator.samples / validation_generator.batch_size)
predictions = model.predict_generator(validation_generator, steps=test_steps_per_epoch)
# Get most likely class
predicted_classes = numpy.argmax(predictions, axis=1)
true_classes = validation_generator.classes
class_labels = list(validation_generator.class_indices.keys())
report = classification_report(true_classes, predicted_classes, target_names=class_labels)
print(report)
cm=confusion_matrix(true_classes,predicted_classes)
sns.heatmap(cm, annot=True)
print(cm)
plt.show()
并收到此错误
2019-12-09 12:55:02.163825: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
Traceback (most recent call last):
File "C:/Users/Acer/PycharmProjects/condas/VGG16.py", line 36, in <module>
x = Dense(1, activation='sigmoid')(x)
File "C:\Users\Acer\Anaconda3\envs\condas\lib\site-packages\keras\backend\tensorflow_backend.py", line 75, in symbolic_fn_wrapper
return func(*args, **kwargs)
File "C:\Users\Acer\Anaconda3\envs\condas\lib\site-packages\keras\engine\base_layer.py", line 475, in __call__
previous_mask = _collect_previous_mask(inputs)
File "C:\Users\Acer\Anaconda3\envs\condas\lib\site-packages\keras\engine\base_layer.py", line 1441, in _collect_previous_mask
mask = node.output_masks[tensor_index]
AttributeError: 'Node' object has no attribute 'output_masks'
Process finished with exit code 1
我使用python 3.6
答案 0 :(得分:1)
GitHub上有一个与此主题GitHub Keras 10907有关的问题
在帖子中有一些关于tensorflow和keras关系的信息:
我遇到了类似的问题,但是架构不同。作为人 建议不要将keras与tensorflow.keras混合使用很重要,因此 尝试交换
import image from keras.models import Model from keras.layers import Dense, GlobalAveragePooling2D from keras import backend as K
收件人:
from tensorflow.keras.preprocessing import image from tensorflow.keras.models import Model from tensorflow.keras.layers import Dense, GlobalAveragePooling2D from tensorflow.keras import backend as K
还要确保,您不在代码内使用keras.something(不是 也只能导入),希望对您有所帮助:)另外,我将Keras 2.2.4与 tensorflow 1.10.0