我收到标题中指出的错误。完整错误:
MaxD = Cone*np.sqrt(SymsX/np.pi)*np.exp((-SymsX/(k*T))) #Define Maxwellian distribution function
AttributeError: 'Mul' object has no attribute 'sqrt'
代码如下:
from sympy.interactive import printing
printing.init_printing(use_latex = True)
import numpy as np
from sympy import Eq, dsolve, Function, Symbol, symbols
import sympy as sp
EpNaut = 8.854187E-12
u0 = 1.256E-6
k = 1/(4*np.pi*EpNaut)
NumGen = 1000 #How many solution points user wants to generate between 0 and maxen (Higher # the more accurate)
T = 1000 #Temperature in (K)
MaxEn = 7*T*k #Max energy in system
Cone = 2/((k*T)**(3/2)) #Constant infront of the Maxwellian distribution function
SymsX = sp.Symbol('SymsX')
MaxD = Function('MaxD')
PFunction = Function('PFunction')
MaxD = Cone*np.sqrt(SymsX/np.pi)*np.exp((-SymsX/(k*T))) #Define Maxwellian distribution function
PFunction = sp.integrate(MaxD) #Integrate function to get probability-error function
print(PFunction)
我还有一个问题。我有时看到示例使用“从...导入...”。为什么是这样?仅仅导入整个库是否就足够了?是因为使用import命令实际上并没有导入整个库,而是实际上只是最基本的功能?
答案 0 :(得分:0)
在isympy
会话中:
In [1]: import numpy as np
In [3]: SymsX = Symbol('SymsX')
In [5]: SymsX/np.pi # symbol * float
Out[5]: 0.318309886183791⋅SymsX
In [6]: SymsX/pi # symbol * symbol
Out[6]:
SymsX
─────
π
In [7]: sqrt(SymsX/pi) # sympy sqrt
Out[7]:
_______
╲╱ SymsX
─────────
√π
In [8]: np.sqrt(SymsX/pi) # numeric sqrt
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
AttributeError: 'Mul' object has no attribute 'sqrt'
The above exception was the direct cause of the following exception:
TypeError Traceback (most recent call last)
<ipython-input-8-27f855f6b3e2> in <module>
----> 1 np.sqrt(SymsX/pi)
TypeError: loop of ufunc does not support argument 0 of type Mul which has no callable sqrt method
np.sqrt
必须首先将其输入转换为numpy数组:
In [10]: np.array(SymsX/np.pi)
Out[10]: array(0.318309886183791*SymsX, dtype=object)
这是一个对象dtype数组,不是普通的数字数组。给定这样的数组,q numpy ufunc
尝试将操作委派给元素方法。例如(0.31*SymsX).sqrt()
乘和加法与此对象数组一起工作:
In [11]: 2*_
Out[11]: 0.636619772367581⋅SymsX
In [12]: _ + __
Out[12]: 0.954929658551372⋅SymsX
这些工作是因为sympy
对象具有正确的加和乘方法:
In [14]: Out[5].__add__
Out[14]: <bound method Expr.__add__ of 0.318309886183791*SymsX>
In [15]: Out[5]+2*Out[5]
Out[15]: 0.954929658551372⋅SymsX
===
sympy.lambdify
是结合使用sympy
和numpy
的最佳工具。查找其文档。
在这种情况下,可以使用以下命令将SymsX/pi
表达式转换为numpy表达式:
In [18]: lambdify(SymsX, Out[5],'numpy')
Out[18]: <function _lambdifygenerated(SymsX)>
In [19]: _(23) # evaluate with `SymsX=23`:
Out[19]: 7.321127382227194
In [20]: 23/np.pi
Out[20]: 7.321127382227186
In [21]: np.sqrt(_19) # np.sqrt now works on the number
Out[21]: 2.7057581899030065
====
在sympy
中的相同评估:
In [23]: expr = sqrt(SymsX/pi)
In [24]: expr
Out[24]:
_______
╲╱ SymsX
─────────
√π
In [25]: expr.subs(SymsX, 23)
Out[25]:
√23
───
√π
In [27]: _.evalf()
Out[27]: 2.70575818990300
答案 1 :(得分:0)
在全新的isympy
会话中:
These commands were executed:
>>> from __future__ import division
>>> from sympy import *
>>> x, y, z, t = symbols('x y z t')
>>> k, m, n = symbols('k m n', integer=True)
>>> f, g, h = symbols('f g h', cls=Function)
>>> init_printing()
Documentation can be found at https://docs.sympy.org/1.4/
In [1]: EpNaut = 8.854187E-12
...: u0 = 1.256E-6
...: k = 1/(4*pi*EpNaut)
...: NumGen = 1000
...: T = 1000
...: MaxEn = 7*T*k
...: Cone = 2/((k*T)**(3/2))
...:
...: SymsX = Symbol('SymsX')
...: MaxD = Function('MaxD')
...: PFunction = Function('PFunction')
...: MaxD = Cone*sqrt(SymsX/pi)*exp((-SymsX/(k*T))) #Define Maxwellian distri
...: bution function
...: PFunction = integrate(MaxD) #Integrate function to get probability-error
...: function
...:
结果:
In [2]: PFunction
Out[2]:
⎛ _______ -3.5416748e-14⋅π⋅Syms
1.0 ⎜ 28235229276273.5⋅╲╱ SymsX ⋅ℯ
1.33303949775482e-20⋅π ⋅⎜- ─────────────────────────────────────────────────
⎝ π
X ⎛ _______⎞⎞
7.50165318945357e+19⋅erf⎝1.88193379267178e-7⋅√π⋅╲╱ SymsX ⎠⎟
─ + ──────────────────────────────────────────────────────────⎟
π ⎠
In [3]: MaxD
Out[3]:
1.0 _______ -3.5416748e-14⋅π⋅SymsX
1.33303949775482e-20⋅π ⋅╲╱ SymsX ⋅ℯ
SymsX
仍然是符号,因此它们是sympy
表达式,而不是数字。