Logistic回归模型的摘要,其中将行显示为系数而不是列变量

时间:2019-12-09 01:54:10

标签: r arrays logistic-regression

我有一个临床数据集,由受试者ID作为行,而不同变量作为列。我想建立一个预测模型,并将我的数据适当地分为测试和训练数据。我建立了一个逻辑回归模型,但是由于某种原因,拟合的摘要输出向我显示了主题ID,而不是列/变量是系数。

这是数据集的样子:

subjectkey         sex   height      weight   interview_age flanker_score cardsort_score intbehaviour_score
NDAR_INV09AUXBBT    M   59.00000    104.00000     118           107          109            GOOD
NDAR_INV0BVP2PTD    F   50.25000    60.00000      120           92           103            GOOD
NDAR_INV0CV2Y4YR    M   55.30000    97.00000      120           83           94             BAD
NDAR_INV0X45NBYM    M   63.50000    104.50000     128           101          103            BAD

这是我用来拟合模型的代码:

data.train.glm <- glm(intbehaviour_score~., data = data.train, family = binomial)

#summary of fit
summary(data.train.glm)

这是我得到的输出:

Call:
glm(formula = intbehaviour_score ~ ., family = binomial, data = data.train)

Deviance Residuals: 
  [1]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [34]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
 [67]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[100]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[133]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[166]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[199]  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0
[232]  0  0  0  0

Coefficients: (11 not defined because of singularities)
                             Estimate Std. Error z value Pr(>|z|)
(Intercept)                -2.657e+01  3.561e+05       0        1
subjectkeyNDAR_INV0BVP2PTD -5.916e-13  5.036e+05       0        1
subjectkeyNDAR_INV0CV2Y4YR  5.313e+01  5.036e+05       0        1
subjectkeyNDAR_INV0X45NBYM  5.313e+01  5.036e+05       0        1
subjectkeyNDAR_INV10EP1VM2 -6.084e-13  5.036e+05       0        1

我不明白为什么主题ID作为系数而不是变量出现。

0 个答案:

没有答案