我想训练我的模型,但我不知道为什么name_list结果为None enter image description here
如果我忽略并将列表直接视为X,结果将变为: enter image description here
这是我的代码:
def name_method1(input):
input = input.lower()
output = []
amount = []
letter_order=[' ', 'a','b','c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '-', '\'',
'.', ',', '(',')']
for character in input:
if character not in letter_order:
break
num = letter_order.index(character)
amount += character
if len(amount) > 30:
break
output.append(num)
leng = len(output)
while leng < 30:
leng += 1
output.append("0")
print(output)
return output
result_list = []
with open("athletes.csv", 'r') as f:
dataset = csv.reader(f)
next(dataset)
for row in dataset:
name = row[0]
nationality = row[1]
name_list = name_method2(name)
result_list.append(name_list)
f.close()
print(result_list)
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
model.fit(X, y, epochs=150, steps_per_epoch=1)
_, accuracy = model.evaluate(X, y)
print('Accuracy: %.2f' % (accuracy*100))
# fit the keras model on the dataset
model.fit(X, y, epochs=150, batch_size=10, verbose=0)
如何纠正?