for epoch in range(num_epochs):
for data in dataloader:
img, _ = data
img = Variable(img).cpu()
# ===================forward=====================
output = model(img)
loss = distance(output, img)
# ===================backward====================
optimizer.zero_grad()
loss.backward()
optimizer.step()
# ===================log========================
print('epoch [{}/{}], loss:{:.4f}'.format(epoch+1, num_epochs, loss.data()))
我正在尝试在Colab上运行此代码,但出现此错误
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-18-93f55b0c43c8> in <module>()
1 for epoch in range(num_epochs):
2 for data in loader_train:
----> 3 img, _ = data
4 img = img.view(img.size(0), -1)
5 img = Variable(img).cuda()
ValueError: too many values to unpack (expected 2)
我在这里检查了几篇文章,建议我添加这一行
dataloader = torch.utils.data.DataLoader(X_Train_torch, batch_size=32, shuffle=False, num_workers=4)
即使这样,我也会遇到相同的错误。有人知道如何解决吗?
PS。在我的训练数据上,有6000张训练图像,每个图像的尺寸均为80x80。