Keras串联层尺寸起作用

时间:2019-12-07 04:58:08

标签: python tensorflow keras

因此,我正在使用tf.keras中的功能API创建模型,在该模型中,我正在执行多输入模型。

用于训练的输入是形状(n_examples = 58667,n_dim = 2748)。每个示例都是2048和700维矢量的串联。

但是我收到一条我不理解的错误消息:

InvalidArgumentError:两个形状中的尺寸0必须相等,但必须为1和0。形状为[1]和[0]。对于“ model_27 / concatenate_28 / concat”(op:“ ConcatV2”),其输入形状为[1,100],[0,100],[],并且计算出的输入张量为:input [2] = <1>。

以下是虚拟输入和导入,使其可运行:

from tensorflow.keras import models, layers, losses, metrics, optimizers
from tensorflow.keras.layers import Dense, Concatenate, Input, Lambda
from tensorflow.keras.models import Model
from tensorflow.keras import backend as K
from sklearn.model_selection import train_test_split
import numpy as np

fake_train = np.random.rand(10000,2748)
fake_test = np.random.randint(0,1,(10000,1))

x_train, x_dev, y_train, y_dev = train_test_split(fake_train, fake_test, test_size = 0.2)

我的模型是通过以下功能创建的:

def build_model():

   input0 = Input(shape=(2748,))

   branch1 = Lambda(lambda x:x[:2048])(input0)
   branch1 = Dense(1000, activation='relu')(branch1)
   branch1 = Dense(100, activation='relu')(branch1)
   branch1 = Dense(100, activation='relu')(branch1)


   branch2 = Lambda(lambda x:x[2048:])(input0)
   branch2 = Dense(1000, activation='relu')(branch2)
   branch2 = Dense(100, activation='relu')(branch2)
   branch2 = Dense(100, activation='relu')(branch2)


   out = layers.concatenate([branch1, branch2],axis=-1)
   out = Dense(10, activation = 'relu')(out)
   out = Dense(1, activation='sigmoid')(out)

   model = Model(inputs=input0, outputs=out)    
   model.compile(optimizer=optimizers.Adam(lr=0.001),
                 loss='binary_crossentropy',
                 metrics=['accuracy', recall_m, precision_m])

   return model

以下是用于伪数据交叉验证的参数:

k = 3 #Number of folds for CV
num_epochs = 4 #for test only
batch_size = 1

这是我对模型的交叉验证,从而引发了错误:

all_loss_histories = []
all_recall_histories = []
all_precision_histories = []
for i in range(k):
    val_data = x_train[i * num_val_samples:(i+1) * num_val_samples]
    val_targets = y_train[i * num_val_samples:(i+1) * num_val_samples]

    partial_train_data = np.concatenate(
        [x_train[:i*num_val_samples],
        x_train[(i+1)*num_val_samples:]],
        axis = 0)
    partial_train_targets = np.concatenate(
        [y_train[:i*num_val_samples],
        y_train[(i+1)*num_val_samples:]],
        axis = 0)

    model = build_model()

    history = model.fit(partial_train_data,
                    partial_train_targets,
                    epochs = num_epochs,
                    batch_size = batch_size,
                    verbose = 1,
                    validation_data = (val_data, val_targets),
                    use_multiprocessing=False)

    print('Finished training fold '+str(i+1))


    loss_history = history.history['val_loss']
    recall_history = history.history['val_recall_m']
    precision_history = history.history['val_precision_m']

    all_loss_histories.append(loss_history)
    all_recall_histories.append(recall_history)
    all_precision_histories.append(precision_history)

知道为什么会有错误吗?

在MacBook Pro 2018上使用python3.7和tf 2.0(在OSX上,而不是在Linux VM上)

谢谢!

完整错误:


---------------------------------------------------------------------------
InvalidArgumentError                      Traceback (most recent call last)
~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
   1609   try:
-> 1610     c_op = c_api.TF_FinishOperation(op_desc)
   1611   except errors.InvalidArgumentError as e:

InvalidArgumentError: Dimension 0 in both shapes must be equal, but are 1 and 0. Shapes are [1] and [0]. for 'model_33/concatenate_34/concat' (op: 'ConcatV2') with input shapes: [1,100], [0,100], [] and with computed input tensors: input[2] = <1>.

During handling of the above exception, another exception occurred:

ValueError                                Traceback (most recent call last)
<timed exec> in <module>

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, max_queue_size, workers, use_multiprocessing, **kwargs)
    726         max_queue_size=max_queue_size,
    727         workers=workers,
--> 728         use_multiprocessing=use_multiprocessing)
    729 
    730   def evaluate(self,

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py in fit(self, model, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_freq, **kwargs)
    322                 mode=ModeKeys.TRAIN,
    323                 training_context=training_context,
--> 324                 total_epochs=epochs)
    325             cbks.make_logs(model, epoch_logs, training_result, ModeKeys.TRAIN)
    326 

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2.py in run_one_epoch(model, iterator, execution_function, dataset_size, batch_size, strategy, steps_per_epoch, num_samples, mode, training_context, total_epochs)
    121         step=step, mode=mode, size=current_batch_size) as batch_logs:
    122       try:
--> 123         batch_outs = execution_function(iterator)
    124       except (StopIteration, errors.OutOfRangeError):
    125         # TODO(kaftan): File bug about tf function and errors.OutOfRangeError?

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in execution_function(input_fn)
     84     # `numpy` translates Tensors to values in Eager mode.
     85     return nest.map_structure(_non_none_constant_value,
---> 86                               distributed_function(input_fn))
     87 
     88   return execution_function

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py in __call__(self, *args, **kwds)
    455 
    456     tracing_count = self._get_tracing_count()
--> 457     result = self._call(*args, **kwds)
    458     if tracing_count == self._get_tracing_count():
    459       self._call_counter.called_without_tracing()

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py in _call(self, *args, **kwds)
    501       # This is the first call of __call__, so we have to initialize.
    502       initializer_map = object_identity.ObjectIdentityDictionary()
--> 503       self._initialize(args, kwds, add_initializers_to=initializer_map)
    504     finally:
    505       # At this point we know that the initialization is complete (or less

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
    406     self._concrete_stateful_fn = (
    407         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 408             *args, **kwds))
    409 
    410     def invalid_creator_scope(*unused_args, **unused_kwds):

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   1846     if self.input_signature:
   1847       args, kwargs = None, None
-> 1848     graph_function, _, _ = self._maybe_define_function(args, kwargs)
   1849     return graph_function
   1850 

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   2148         graph_function = self._function_cache.primary.get(cache_key, None)
   2149         if graph_function is None:
-> 2150           graph_function = self._create_graph_function(args, kwargs)
   2151           self._function_cache.primary[cache_key] = graph_function
   2152         return graph_function, args, kwargs

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   2039             arg_names=arg_names,
   2040             override_flat_arg_shapes=override_flat_arg_shapes,
-> 2041             capture_by_value=self._capture_by_value),
   2042         self._function_attributes,
   2043         # Tell the ConcreteFunction to clean up its graph once it goes out of

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    913                                           converted_func)
    914 
--> 915       func_outputs = python_func(*func_args, **func_kwargs)
    916 
    917       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    356         # __wrapped__ allows AutoGraph to swap in a converted function. We give
    357         # the function a weak reference to itself to avoid a reference cycle.
--> 358         return weak_wrapped_fn().__wrapped__(*args, **kwds)
    359     weak_wrapped_fn = weakref.ref(wrapped_fn)
    360 

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in distributed_function(input_iterator)
     71     strategy = distribution_strategy_context.get_strategy()
     72     outputs = strategy.experimental_run_v2(
---> 73         per_replica_function, args=(model, x, y, sample_weights))
     74     # Out of PerReplica outputs reduce or pick values to return.
     75     all_outputs = dist_utils.unwrap_output_dict(

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/distribute/distribute_lib.py in experimental_run_v2(self, fn, args, kwargs)
    758       fn = autograph.tf_convert(fn, ag_ctx.control_status_ctx(),
    759                                 convert_by_default=False)
--> 760       return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)
    761 
    762   def reduce(self, reduce_op, value, axis):

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/distribute/distribute_lib.py in call_for_each_replica(self, fn, args, kwargs)
   1785       kwargs = {}
   1786     with self._container_strategy().scope():
-> 1787       return self._call_for_each_replica(fn, args, kwargs)
   1788 
   1789   def _call_for_each_replica(self, fn, args, kwargs):

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/distribute/distribute_lib.py in _call_for_each_replica(self, fn, args, kwargs)
   2130         self._container_strategy(),
   2131         replica_id_in_sync_group=constant_op.constant(0, dtypes.int32)):
-> 2132       return fn(*args, **kwargs)
   2133 
   2134   def _reduce_to(self, reduce_op, value, destinations):

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/autograph/impl/api.py in wrapper(*args, **kwargs)
    290   def wrapper(*args, **kwargs):
    291     with ag_ctx.ControlStatusCtx(status=ag_ctx.Status.DISABLED):
--> 292       return func(*args, **kwargs)
    293 
    294   if inspect.isfunction(func) or inspect.ismethod(func):

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_v2_utils.py in train_on_batch(model, x, y, sample_weight, class_weight, reset_metrics)
    262       y,
    263       sample_weights=sample_weights,
--> 264       output_loss_metrics=model._output_loss_metrics)
    265 
    266   if reset_metrics:

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_eager.py in train_on_batch(model, inputs, targets, sample_weights, output_loss_metrics)
    309           sample_weights=sample_weights,
    310           training=True,
--> 311           output_loss_metrics=output_loss_metrics))
    312   if not isinstance(outs, list):
    313     outs = [outs]

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_eager.py in _process_single_batch(model, inputs, targets, output_loss_metrics, sample_weights, training)
    250               output_loss_metrics=output_loss_metrics,
    251               sample_weights=sample_weights,
--> 252               training=training))
    253       if total_loss is None:
    254         raise ValueError('The model cannot be run '

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/training_eager.py in _model_loss(model, inputs, targets, output_loss_metrics, sample_weights, training)
    125     inputs = nest.map_structure(ops.convert_to_tensor, inputs)
    126 
--> 127   outs = model(inputs, **kwargs)
    128   outs = nest.flatten(outs)
    129 

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
    845                     outputs = base_layer_utils.mark_as_return(outputs, acd)
    846                 else:
--> 847                   outputs = call_fn(cast_inputs, *args, **kwargs)
    848 
    849             except errors.OperatorNotAllowedInGraphError as e:

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/network.py in call(self, inputs, training, mask)
    706     return self._run_internal_graph(
    707         inputs, training=training, mask=mask,
--> 708         convert_kwargs_to_constants=base_layer_utils.call_context().saving)
    709 
    710   def compute_output_shape(self, input_shape):

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/network.py in _run_internal_graph(self, inputs, training, mask, convert_kwargs_to_constants)
    858 
    859           # Compute outputs.
--> 860           output_tensors = layer(computed_tensors, **kwargs)
    861 
    862           # Update tensor_dict.

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/engine/base_layer.py in __call__(self, inputs, *args, **kwargs)
    845                     outputs = base_layer_utils.mark_as_return(outputs, acd)
    846                 else:
--> 847                   outputs = call_fn(cast_inputs, *args, **kwargs)
    848 
    849             except errors.OperatorNotAllowedInGraphError as e:

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/layers/merge.py in call(self, inputs)
    180         return y
    181     else:
--> 182       return self._merge_function(inputs)
    183 
    184   @tf_utils.shape_type_conversion

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/layers/merge.py in _merge_function(self, inputs)
    392 
    393   def _merge_function(self, inputs):
--> 394     return K.concatenate(inputs, axis=self.axis)
    395 
    396   @tf_utils.shape_type_conversion

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/keras/backend.py in concatenate(tensors, axis)
   2706     return sparse_ops.sparse_concat(axis, tensors)
   2707   else:
-> 2708     return array_ops.concat([to_dense(x) for x in tensors], axis)
   2709 
   2710 

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/util/dispatch.py in wrapper(*args, **kwargs)
    178     """Call target, and fall back on dispatchers if there is a TypeError."""
    179     try:
--> 180       return target(*args, **kwargs)
    181     except (TypeError, ValueError):
    182       # Note: convert_to_eager_tensor currently raises a ValueError, not a

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/ops/array_ops.py in concat(values, axis, name)
   1429           dtype=dtypes.int32).get_shape().assert_has_rank(0)
   1430       return identity(values[0], name=name)
-> 1431   return gen_array_ops.concat_v2(values=values, axis=axis, name=name)
   1432 
   1433 

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/ops/gen_array_ops.py in concat_v2(values, axis, name)
   1255   _attr_N = len(values)
   1256   _, _, _op = _op_def_lib._apply_op_helper(
-> 1257         "ConcatV2", values=values, axis=axis, name=name)
   1258   _result = _op.outputs[:]
   1259   _inputs_flat = _op.inputs

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/op_def_library.py in _apply_op_helper(self, op_type_name, name, **keywords)
    791         op = g.create_op(op_type_name, inputs, dtypes=None, name=scope,
    792                          input_types=input_types, attrs=attr_protos,
--> 793                          op_def=op_def)
    794       return output_structure, op_def.is_stateful, op
    795 

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/func_graph.py in create_op(***failed resolving arguments***)
    546     return super(FuncGraph, self)._create_op_internal(  # pylint: disable=protected-access
    547         op_type, inputs, dtypes, input_types, name, attrs, op_def,
--> 548         compute_device)
    549 
    550   def capture(self, tensor, name=None):

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py in _create_op_internal(self, op_type, inputs, dtypes, input_types, name, attrs, op_def, compute_device)
   3427           input_types=input_types,
   3428           original_op=self._default_original_op,
-> 3429           op_def=op_def)
   3430       self._create_op_helper(ret, compute_device=compute_device)
   3431     return ret

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py in __init__(self, node_def, g, inputs, output_types, control_inputs, input_types, original_op, op_def)
   1771           op_def, inputs, node_def.attr)
   1772       self._c_op = _create_c_op(self._graph, node_def, grouped_inputs,
-> 1773                                 control_input_ops)
   1774     # pylint: enable=protected-access
   1775 

~/opt/anaconda3/lib/python3.7/site-packages/tensorflow_core/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
   1611   except errors.InvalidArgumentError as e:
   1612     # Convert to ValueError for backwards compatibility.
-> 1613     raise ValueError(str(e))
   1614 
   1615   return c_op


ValueError: Dimension 0 in both shapes must be equal, but are 1 and 0. Shapes are [1] and [0]. for 'model_33/concatenate_34/concat' (op: 'ConcatV2') with input shapes: [1,100], [0,100], [] and with computed input tensors: input[2] = <1>.```

1 个答案:

答案 0 :(得分:0)

我相信你想要

Lambda(lambda x:x[:, :2048])(input0)

Lambda(lambda x:x[:,2048:])(input0)

因为有一个应保留的批处理轴。您当前的代码沿批处理轴拆分2048个 ,这导致concatenate的一个输入的批量大小为0,一个输入的批量大小为1。不匹配,无法串联。

进行此更正可使我运行您的代码而不会出现错误。