我已经使用sqlalchemy和pymysql从MySQL加载了raw_data
engine = create_engine('mysql+pymysql://[user]:[passwd]@[host]:[port]/[database]')
df = pd.read_sql_table('data', engine)
df就是这样
| Age Category | Category |
|--------------|----------------|
| 31-26 | Engaged |
| 26-31 | Engaged |
| 31-36 | Not Engaged |
| Above 51 | Engaged |
| 41-46 | Disengaged |
| 46-51 | Nearly Engaged |
| 26-31 | Disengaged |
然后我进行了如下分析
age = pd.crosstab(df['Age Category'], df['Category'])
| Category | A | B | C | D |
|--------------|---|----|----|---|
| Age Category | | | | |
| 21-26 | 2 | 2 | 4 | 1 |
| 26-31 | 7 | 11 | 12 | 5 |
| 31-36 | 3 | 5 | 5 | 2 |
| 36-41 | 2 | 4 | 1 | 7 |
| 41-46 | 0 | 1 | 3 | 2 |
| 46-51 | 0 | 0 | 2 | 3 |
| Above 51 | 0 | 3 | 0 | 6 |
我想将其更改为 熊猫DataFrame是这样的。
| Age Category | A | B | C | D |
|--------------|---|----|----|---|
| 21-26 | 2 | 2 | 4 | 1 |
| 26-31 | 7 | 11 | 12 | 5 |
| 31-36 | 3 | 5 | 5 | 2 |
| 36-41 | 2 | 4 | 1 | 7 |
| 41-46 | 0 | 1 | 3 | 2 |
| 46-51 | 0 | 0 | 2 | 3 |
| Above 51 | 0 | 3 | 0 | 6 |
感谢您的时间和考虑
答案 0 :(得分:2)
这两种文本都称为列和索引名,更改它们的解决方案是使用DataFrame.rename_axis
:
age = age.rename_axis(index=None, columns='Age Category')
或通过索引名称设置列名称,然后将索引名称设置为默认值-None
:
age.columns.name = age.index.name
age.index.name = None
print (age)
Age Category Disengaged Engaged Nearly Engaged Not Engaged
26-31 1 1 0 0
31-26 0 1 0 0
31-36 0 0 0 1
41-46 1 0 0 0
46-51 0 0 1 0
Above 51 0 1 0 0
但是这些文本类似于元数据,因此某些功能应将其删除。