已解决:Python多处理imap BrokenPipeError:[Errno 32]管道pdftoppm损坏

时间:2019-12-05 21:07:59

标签: python python-multiprocessing python-tesseract pdftoppm

首先让我说,这不是其他类似问题的重复,在其他类似问题中,人们倾向于更紧密地管理工人。

在使用multiprocessing.Pool.imap时,我一直在努力应对代码抛出的以下异常:

  File "/usr/local/bin/homebrew/Cellar/python@2/2.7.17/lib/python2.7/multiprocessing/process.py", line 267, in _bootstrap
    self.run()
  File "/usr/local/bin/homebrew/Cellar/python@2/2.7.17/lib/python2.7/multiprocessing/process.py", line 114, in run
    self._target(*self._args, **self._kwargs)
  File "/usr/local/bin/homebrew/Cellar/python@2/2.7.17/lib/python2.7/multiprocessing/pool.py", line 122, in worker
    put((job, i, (False, wrapped)))
  File "/usr/local/bin/homebrew/Cellar/python@2/2.7.17/lib/python2.7/multiprocessing/queues.py", line 390, in put
    return send(obj)
IOError: [Errno 32] Broken pipe

在执行以下主程序时,这会在很多时候出现:

    pool = mp.Pool(num_workers)
    # Calculate a good chunksize (based on implementation of pool.map)
    chunksize, extra = divmod(lengthData, 4 * num_workers)
    if extra:
        chunksize += 1

    func = partial(pdf_to_txt, input_folder=inputFolder, junk_folder=imageJunkFolder, out_folder=outTextFolder,
                   log_name=log_name, log_folder=None,
                   empty_log=False, input_folder_iterator=None,
                   print_console=True)

    flag_vec = pool.imap(func, (dataFrame['testo accordo'][i] for i in range(lengthData)), chunksize)
    dataFrame['flags_conversion'] = pd.Series(flag_vec)
    dataFrame.to_excel("{0}logs/{1}.xlsx".format(outTextFolder, nameOut))
    pool.close()
    pool.join()

仅供参考,该部分功能将获取非OCR PDF文件,将其分割为每页图像,然后使用pytesseract运行OCR。

我正在以下计算机上运行代码:

This is a physical machine (PowerEdge R930) running RedHat 7.7 (Linux 3.10.0).

Processor:  Intel(R) Xeon(R) CPU E7-8880 v3 @ 2.30GHz (x144)
Memory:     1.48 TiB
Swap:       7.81 GiB
Uptime:     21 days

也许我应该减小块大小?我真的不清楚。我注意到,当服务器上的工作人员较少时,代码似乎可以更好地工作……

1 个答案:

答案 0 :(得分:0)

经过大量的痛苦,我发现问题出在pdftoppm(即使用pdf2image)上。看来pdftoppm有时会卡住而没有引发任何异常。

如果有人遇到此问题,我热烈建议切换到PyMuPDF以从pdf中提取图像。它更快,更稳定!