我目前有一个看起来像这样的数据框。
country2<-c("Afghanistan","Afghanistan","Afghanistan")
continent2<-c("Asia","Asia","Asia")
series<-c('lifeexp','pop','gdp')
y1901<-c('1','3','100')
y1902<-c('2','4','101')
y1903<-c('2','4','101')
y1904<-c('2','4','101')
y1905<-c('2','4','101')
y1906<-c('2','4','101')
y1907<-c('2','4','101')
df<-data.frame(country2,continent2,series,y1901,y1902,y1903,y1904,y1905,y1906,y1907)
country2 continent2 series y1901 y1902 y1903 y1904 y1905 y1906 y1907
1 Afghanistan Asia lifeexp 1 2 2 2 2 2 2
2 Afghanistan Asia pop 3 4 4 4 4 4 4
3 Afghanistan Asia gdp 100 101 101 101 101 101 101
如何重塑这些数据,使其看起来像这样?
country<-c("Afghanistan","Afghanistan","Afghanistan","Afghanistan","Afghanistan","Afghanistan","Afghanistan")
continent<-c("Asia","Asia","Asia","Asia","Asia","Asia","Asia")
year<-c("1901","1902","1903","1904","1905","1906","1907")
lifeexp<-c("1","2","2","2","2","2","2")
pop<-c('3','4','4','4','4','4','4')
gdp<-c('100','101','101','101','101','101','101')
df<-data.frame(country,continent,year,lifeexp,pop,gdp)
country continent year lifeexp pop gdp
1 Afghanistan Asia 1901 1 3 100
2 Afghanistan Asia 1902 2 4 101
3 Afghanistan Asia 1903 2 4 101
4 Afghanistan Asia 1904 2 4 101
5 Afghanistan Asia 1905 2 4 101
6 Afghanistan Asia 1906 2 4 101
7 Afghanistan Asia 1907 2 4 101
我尝试使用reshape2中的dcast2来重塑数据,但我只能为value.var输入1列。
dcast(df,country+region~series,value.var ='y1901',fun.aggregate = sum)
我也尝试使用ftable和xtabs,但是我仍然不确定如何为该值输入多于1列。下面的代码给出了错误。
ftable(xtabs(c(y2000,y2001)~country+region+series,df))
谢谢
答案 0 :(得分:0)
我知道您正在寻找使用ftable
或dcast
的解决方案,但就您所知,您可以使用tidyr
来实现:
library(tidyverse)
df %>%
pivot_longer(., cols = starts_with("y190"), names_to = "year", values_to = "Value") %>%
pivot_wider(., names_from = "series", values_from = "Value") %>%
mutate(year = gsub("y","", year)) %>%
rename(country = country2, continent = continent2)
# A tibble: 7 x 6
country continent year lifeexp pop gdp
<fct> <fct> <chr> <fct> <fct> <fct>
1 Afghanistan Asia 1901 1 3 100
2 Afghanistan Asia 1902 2 4 101
3 Afghanistan Asia 1903 2 4 101
4 Afghanistan Asia 1904 2 4 101
5 Afghanistan Asia 1905 2 4 101
6 Afghanistan Asia 1906 2 4 101
7 Afghanistan Asia 1907 2 4 101
答案 1 :(得分:0)
使用data.table
和melt
的{{1}}方法可能是
dcast