我有一个格式为pandas的熊猫:
id start_time sequence_no value
0 71 2018-10-17 20:12:43+00:00 114428 3
1 71 2018-10-17 20:12:43+00:00 114429 3
2 71 2018-10-17 20:12:43+00:00 114431 79
3 71 2019-11-06 00:51:14+00:00 216009 100
4 71 2019-11-06 00:51:14+00:00 216011 150
5 71 2019-11-06 00:51:14+00:00 216013 180
6 92 2019-12-01 00:51:14+00:00 114430 19
7 92 2019-12-01 00:51:14+00:00 114433 79
8 92 2019-12-01 00:51:14+00:00 114434 100
我要尝试做的是填写丢失的sequence_no
每 id
/ start_time
组合。例如,id
和start_time
的{{1}} / 71
对缺少sequence_no114430。对于每个添加的缺失sequence_no,我还需要对缺失的{{ 1}}列值。因此,对以上数据的最终处理将看起来像这样:
2018-10-17 20:12:43+00:00
({value
已添加到新插入的行的右侧,以便于阅读)
我执行此操作的原始解决方案在很大程度上依赖于对大量数据表的Python循环,因此它似乎是numpy和pandas发光的理想场所。靠Pandas: create rows to fill numeric gaps之类的答案,我想到了:
id start_time sequence_no value
0 71 2018-10-17 20:12:43+00:00 114428 3
1 71 2018-10-17 20:12:43+00:00 114429 3
2 71 2018-10-17 20:12:43+00:00 114430 41 **
3 71 2018-10-17 20:12:43+00:00 114431 79
4 71 2019-11-06 00:51:14+00:00 216009 100
5 71 2019-11-06 00:51:14+00:00 216010 125 **
6 71 2019-11-06 00:51:14+00:00 216011 150
7 71 2019-11-06 00:51:14+00:00 216012 165 **
8 71 2019-11-06 00:51:14+00:00 216013 180
9 92 2019-12-01 00:51:14+00:00 114430 19
10 92 2019-12-01 00:51:14+00:00 114431 39 **
11 92 2019-12-01 00:51:14+00:00 114432 59 **
12 92 2019-12-01 00:51:14+00:00 114433 79
13 92 2019-12-01 00:51:14+00:00 114434 100
输出正确,但是它的运行速度几乎与我的大量python循环解决方案相同。我敢肯定有些地方可以减少一些步骤,但是测试中最慢的部分似乎是**
。鉴于现实世界中的数据几乎包含一百万行(经常进行操作),是否有任何明显的方法可以取得比我已经写过的性能更高的性能?有什么方法可以加快这种转变?
在足够大的数据集上进行测试时,将this answer的合并解决方案与扩展数据帧的原始结构结合起来,可以得到迄今为止最快的结果:
import pandas as pd
import numpy as np
# Generate dummy data
df = pd.DataFrame([
(71, '2018-10-17 20:12:43+00:00', 114428, 3),
(71, '2018-10-17 20:12:43+00:00', 114429, 3),
(71, '2018-10-17 20:12:43+00:00', 114431, 79),
(71, '2019-11-06 00:51:14+00:00', 216009, 100),
(71, '2019-11-06 00:51:14+00:00', 216011, 150),
(71, '2019-11-06 00:51:14+00:00', 216013, 180),
(92, '2019-12-01 00:51:14+00:00', 114430, 19),
(92, '2019-12-01 00:51:14+00:00', 114433, 79),
(92, '2019-12-01 00:51:14+00:00', 114434, 100),
], columns=['id', 'start_time', 'sequence_no', 'value'])
# create a new DataFrame with the min/max `sequence_no` values for each `id`/`start_time` pairing
by_start = df.groupby(['start_time', 'id'])
ranges = by_start.agg(
sequence_min=('sequence_no', np.min), sequence_max=('sequence_no', np.max)
)
reset = ranges.reset_index()
mins = reset['sequence_min']
maxes = reset['sequence_max']
# Use those min/max values to generate a sequence with ALL values in that range
expanded = pd.DataFrame(dict(
start_time=reset['start_time'].repeat(maxes - mins + 1),
id=reset['id'].repeat(maxes - mins + 1),
sequence_no=np.concatenate([np.arange(mins, maxes + 1) for mins, maxes in zip(mins, maxes)])
))
# Use the above generated DataFrame as an index to generate the missing rows, then interpolate
expanded_index = pd.MultiIndex.from_frame(expanded)
df.set_index(
['start_time', 'id', 'sequence_no']
).reindex(expanded_index).interpolate()
答案 0 :(得分:7)
使用merge
代替reindex
可以加快速度。另外,也可以使用map而不是列表理解。
# Generate dummy data
df = pd.DataFrame([
(71, '2018-10-17 20:12:43+00:00', 114428, 3),
(71, '2018-10-17 20:12:43+00:00', 114429, 3),
(71, '2018-10-17 20:12:43+00:00', 114431, 79),
(71, '2019-11-06 00:51:14+00:00', 216009, 100),
(71, '2019-11-06 00:51:14+00:00', 216011, 150),
(71, '2019-11-06 00:51:14+00:00', 216013, 180),
(92, '2019-12-01 00:51:14+00:00', 114430, 19),
(92, '2019-12-01 00:51:14+00:00', 114433, 79),
(92, '2019-12-01 00:51:14+00:00', 114434, 100),
], columns=['id', 'start_time', 'sequence_no', 'value'])
# create a ranges df with groupby and agg
ranges = df.groupby(['start_time', 'id'])['sequence_no'].agg([('sequence_min', np.min), ('sequence_max', np.max)])
# map with range to create the sequence number rnage
ranges['sequence_no'] = list(map(lambda x,y: range(x,y), ranges.pop('sequence_min'), ranges.pop('sequence_max')+1))
# explode you DataFrame
new_df = ranges.explode('sequence_no')
# merge new_df and df
merge = new_df.reset_index().merge(df, on=['start_time', 'id', 'sequence_no'], how='left')
# interpolate and assign values
merge['value'] = merge['value'].interpolate()
start_time id sequence_no value
0 2018-10-17 20:12:43+00:00 71 114428 3.0
1 2018-10-17 20:12:43+00:00 71 114429 3.0
2 2018-10-17 20:12:43+00:00 71 114430 41.0
3 2018-10-17 20:12:43+00:00 71 114431 79.0
4 2019-11-06 00:51:14+00:00 71 216009 100.0
5 2019-11-06 00:51:14+00:00 71 216010 125.0
6 2019-11-06 00:51:14+00:00 71 216011 150.0
7 2019-11-06 00:51:14+00:00 71 216012 165.0
8 2019-11-06 00:51:14+00:00 71 216013 180.0
9 2019-12-01 00:51:14+00:00 92 114430 19.0
10 2019-12-01 00:51:14+00:00 92 114431 39.0
11 2019-12-01 00:51:14+00:00 92 114432 59.0
12 2019-12-01 00:51:14+00:00 92 114433 79.0
13 2019-12-01 00:51:14+00:00 92 114434 100.0
答案 1 :(得分:3)
merge
解决方案的简化版本:
df.groupby(['start_time', 'id'])['sequence_no']\
.apply(lambda x: np.arange(x.min(), x.max() + 1))\
.explode().reset_index()\
.merge(df, on=['start_time', 'id', 'sequence_no'], how='left')\
.interpolate()
输出:
start_time id sequence_no value
0 2018-10-17 20:12:43+00:00 71 114428 3.0
1 2018-10-17 20:12:43+00:00 71 114429 3.0
2 2018-10-17 20:12:43+00:00 71 114430 41.0
3 2018-10-17 20:12:43+00:00 71 114431 79.0
4 2019-11-06 00:51:14+00:00 71 216009 100.0
5 2019-11-06 00:51:14+00:00 71 216010 125.0
6 2019-11-06 00:51:14+00:00 71 216011 150.0
7 2019-11-06 00:51:14+00:00 71 216012 165.0
8 2019-11-06 00:51:14+00:00 71 216013 180.0
9 2019-12-01 00:51:14+00:00 92 114430 19.0
10 2019-12-01 00:51:14+00:00 92 114431 39.0
11 2019-12-01 00:51:14+00:00 92 114432 59.0
12 2019-12-01 00:51:14+00:00 92 114433 79.0
13 2019-12-01 00:51:14+00:00 92 114434 100.0
答案 2 :(得分:1)
使用reindex
而不使用explode
的另一种解决方案:
result = (df.groupby(["id","start_time"])
.apply(lambda d: d.set_index("sequence_no")
.reindex(range(min(d["sequence_no"]),max(d["sequence_no"])+1)))
.drop(["id","start_time"],axis=1).reset_index()
.interpolate())
print (result)
#
id start_time sequence_no value
0 71 2018-10-17 20:12:43+00:00 114428 3.0
1 71 2018-10-17 20:12:43+00:00 114429 3.0
2 71 2018-10-17 20:12:43+00:00 114430 41.0
3 71 2018-10-17 20:12:43+00:00 114431 79.0
4 71 2019-11-06 00:51:14+00:00 216009 100.0
5 71 2019-11-06 00:51:14+00:00 216010 125.0
6 71 2019-11-06 00:51:14+00:00 216011 150.0
7 71 2019-11-06 00:51:14+00:00 216012 165.0
8 71 2019-11-06 00:51:14+00:00 216013 180.0
9 92 2019-12-01 00:51:14+00:00 114430 19.0
10 92 2019-12-01 00:51:14+00:00 114431 39.0
11 92 2019-12-01 00:51:14+00:00 114432 59.0
12 92 2019-12-01 00:51:14+00:00 114433 79.0
13 92 2019-12-01 00:51:14+00:00 114434 100.0