我有一个包含三列的数据框,我想为媒体中的每个变量计算95%的上公差水平。数据如下所示: 因此,对于塑料和水,我需要分别计算每个变量的公差水平,并将其写为第四列。我正在使用
nptol.int(data$result, alpha = 0.05, P = 0.95, side = 1, method=c("WILKS"))
功能。
media variable result
plastic A 2.3
plastic B 4
plastic C 4.6
plastic D 3
plastic A 2
plastic B 5
plastic C 6.7
plastic A 8
plastic B 5
plastic C 4
water A 2
water B 4
water C 5
water A 8.2
water B 4
water C 5
plastic A 6
plastic B 7
plastic C 11.2
谢谢
答案 0 :(得分:1)
使用 const [LocalCodeMutation] = useMutation(LOCALCODE_MUTATION, {
refetchQueries: () => [
{ query: GET_LOCALCODES },
],
});
export const LOCALCODE_MUTATION = gql`
mutation LocalCodeMutation($data: LocalCodeRequestParamsInput) {
localCodeMutation(data: $data) {
ok
errors
localCodeInsertedId
}
}
`;
,您可以执行以下操作:
dplyr
如果您希望将其写为第4列并保留所有结果,则可以执行以下操作:
library(dplyr)
library(tolerance)
df %>% group_by(media, variable) %>% summarize(Upper = nptol.int(result, alpha = 0.05, P = 0.95, side = 1, method=c("WILKS"))$`1-sided.upper`)
# A tibble: 6 x 3
# Groups: media [2]
media variable Upper
<fct> <fct> <dbl>
1 plastic A 11.2
2 plastic B 8
3 plastic C 7
4 water A 5
5 water B 8.2
6 water C 4
数据
您的数据只有一个D值,显然这是df %>% group_by(media, variable) %>% mutate(Upper = nptol.int(result, alpha = 0.05, P = 0.95, side = 1, method=c("WILKS"))$`1-sided.upper`)
# A tibble: 19 x 4
# Groups: media, variable [6]
media variable result Upper
<fct> <fct> <dbl> <dbl>
1 plastic A 2.3 11.2
2 plastic B 4 8
3 plastic C 4.6 7
4 plastic A 3 11.2
5 plastic B 2 8
6 plastic C 5 7
7 plastic A 6.7 11.2
8 plastic B 8 8
9 plastic C 5 7
10 plastic A 4 11.2
11 water B 2 8.2
12 water C 4 4
13 water A 5 5
14 water B 8.2 8.2
15 water C 4 4
16 water A 5 5
17 plastic B 6 8
18 plastic C 7 7
19 plastic A 11.2 11.2
的问题,因此我改用了此数据:
npol.int