我有一个简单的模型,将序列嵌入变平,然后求和。当我进行预测时,没有任何错误,也没有期望的输出形状,但是当我尝试训练时,却出现了形状不匹配错误
这是模型:
import numpy as np
from keras import backend as K
from keras.models import Model
from keras.layers.embeddings import Embedding
from keras.layers import Reshape, Lambda
inputs = Input(shape=(20,), name="inputs")
embedding = Embedding(69, 100, name="embeddings")(inputs)
out = Reshape((2000,), name='reshape_embeddings')(embedding)
out = Lambda(lambda x: K.sum(x, axis=1), name='sum_embeddings')(out)
model = Model(inputs, out)
model.compile('adam', 'mean_squared_error')
print(model.summary())
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
inputs (InputLayer) (None, 20) 0
_________________________________________________________________
embeddings (Embedding) (None, 20, 100) 6900
_________________________________________________________________
reshape_embeddings (Reshape) (None, 2000) 0
_________________________________________________________________
sum_embeddings (Lambda) (None,) 0
=================================================================
Total params: 6,900
Trainable params: 6,900
Non-trainable params: 0
_________________________________________________________________
在这里,我建立一个随机的x,y样本:
x = np.random.randint(69, size=(500,20))
y = np.random.uniform(0, 1, size=(500,))
当我预测x时,我会得到正确的输出形状
preds = model.predict(x)
print(preds.shape == y.shape)
当我拟合模型时,出现以下错误:
model.fit(x, y, batch_size=50, verbose=1)
ValueError:检查目标时出错:预期的sum_embeddings 有1个维度,但数组的形状为(500,1)
感觉好像我缺少一些非常简单的东西。任何建议将不胜感激
答案 0 :(得分:1)
是的,这是您的代码中的几个简单问题。模型的输出至少必须具有2级(在这种情况下为(None,1)
)(我的2美分是优化器抱怨的不是2分)。这是使用keepdims=True
完成的。然后,您也必须向y
添加一个维度。
inputs = Input(shape=(20,), name="inputs")
embedding = Embedding(69, 100, name="embeddings")(inputs)
out = Reshape((2000,), name='reshape_embeddings')(embedding)
out = Lambda(lambda x: K.sum(x, axis=1, keepdims=True), name='sum_embeddings')(out)
model = Model(inputs, out)
model.compile('adam', 'mean_squared_error')
print(model.summary())
x = np.random.randint(69, size=(500,20))
y = np.random.uniform(0, 1, size=(500,1))
preds = model.predict(x)
print(preds.shape == y.shape)
model.fit(x, y, batch_size=50, verbose=1)