张量流图正则化(NSL)如何影响三重态半硬损失(TFA)

时间:2019-12-04 18:27:15

标签: python tensorflow keras deep-learning nsl

我要使用tutorial中所述的 const Maps = () => { const [events, setEvents] = useState([]) const handleClick = (e) => { console.log(geoLoc) e.preventDefault() setGeoloc({ ...viewport }) } useEffect(() => { fetch(`https://api.list.co.uk/v1/events?near=${geoLoc.latitude},${geoLoc.longitude}/5`, { headers: { 'Authorization': `Bearer ${API_KEY}` } }) .then(res => res.json()) .then(res => setEvents(res)) console.log(geoLoc.latitude) return () => console.log('Unmounting component') }, []) const [viewport, setViewport] = useState({ width: '100vw', height: '100vh', latitude: 51.45523, longitude: -2.59665, zoom: 13.5 }) const [geoLoc, setGeoloc] = useState({ latitude: 51.45523, longitude: -2.59665 }) if (events.length === 0) { return <div>Loading...</div> } return <div> <ReactMapGL mapboxApiAccessToken={TOKEN} mapStyle="mapbox://styles/dredizzle/ck3owxclr138a1cqnzupab2hc" {...viewport} onViewportChange={viewport => { setViewport(viewport) }} onClick={handleClick} > {events.map(event => ( <Popup key={event.event_id} latitude={event.schedules[0].place.lat} longitude={event.schedules[0].place.lng} > </Popup> ))} {/* <Popup latitude={51.45523} longitude={-2.59665}> <div>event here</div> </Popup> */} <GeolocateControl positionOptions={{ enableHighAccuracy: true }} trackUserLocation={false} /> </ReactMapGL> </div> } export default Maps 来训练二进制目标深度神经网络模型。我的模型在中间的密集层中有一个triplet semihard loss,不应对其进行“图形正则化”。

来自Github上的nsl.keras.GraphRegularization definition

  

将图正则化合并到nsl.keras.GraphRegularization的丢失中。

     

图形正则化仅在训练期间在logits层完成。

这意味着中间的三重态半硬质损耗将不受此正则化影响吗?

1 个答案:

答案 0 :(得分:0)

是的,没错。图正则化将仅应用于base_model的输出。如果您的base_model在另一层中使用三重态半硬损耗,则该损耗应保持不受影响并保留。如果不是这种情况,请在https://github.com/tensorflow/neural-structured-learning/issues处提交错误。