基于R中另一列的值进行计数

时间:2019-12-04 15:26:00

标签: r

我正在尝试在我的数据框中创建一个新列(称为Error_1_Count),该列针对“名称”的每个不同值计算“错误类型1”在名为“错误”的列中出现的次数。下面是我想要的结果数据框示例。

我曾尝试根据错误创建一个带有赋值的循环(请参见下文),但是,计数在我的输出中不正确(仅导致0和1)。

请让我知道如何改善代码并确保仅针对“名称”的新值重置计数。谢谢!

Goal Result in Table


Name       Error         Error_1_Count
A       Error Type 1          1
A       Error Type 4          1
A       Error Type 1          2
B       Error Type 2          0
A       Error Type 1          3
C       Error Type 3          0
D       Error Type 1          1


names <- unique(data.df$name)
count <- 0

for (i in names) {

  data.df[data.df$name == i, data.df$error_1_count <- ifelse(data.df$error == 'Error Type 1', count + 1, count)]

}


#View(data.df)
#print(unique(data.df$error_1_count))


2 个答案:

答案 0 :(得分:3)

您可以使用avecumsum

x$Error_1_Count <- ave(x$Error == "Error Type 1", x$Name, FUN=cumsum)
x
#  Name        Error Error_1_Count
#1    A Error Type 1             1
#2    A Error Type 4             1
#3    A Error Type 1             2
#4    B Error Type 2             0
#5    A Error Type 1             3
#6    C Error Type 3             0
#7    D Error Type 1             1

数据:

x <- structure(list(Name = structure(c(1L, 1L, 1L, 2L, 1L, 3L, 4L), .Label = c("A", 
"B", "C", "D"), class = "factor"), Error = structure(c(1L, 4L, 
1L, 2L, 1L, 3L, 1L), .Label = c("Error Type 1", "Error Type 2", 
"Error Type 3", "Error Type 4"), class = "factor")), row.names = c(NA, 
-7L), class = "data.frame")

答案 1 :(得分:3)

dplyr

类似的想法
library(dplyr)
df1 %>%
     group_by(Name) %>%
     mutate(Error = cumsum(Error == "Error Type 1"))

数据

df1 <- structure(list(Name = c("A", "A", "A", "B", "A", "C", "D"), Error = c("Error Type 1", 
"Error Type 4", "Error Type 1", "Error Type 2", "Error Type 1", 
"Error Type 3", "Error Type 1")), row.names = c(NA, -7L), class = "data.frame")