我试图运行这个简单的模型。基本上,此模型用于文本分类。我已经使用了随机词嵌入。
import torch.nn as nn
import torch.nn.functional as F
class DSC_RE(nn.Module):
def __init__(self, input_dim, embedding_dim, output_dim):
super().__init__()
self.embedding = nn.Embedding(input_dim, embedding_dim)
self.fc = nn.Linear(embedding_dim, output_dim)
def forward(self, text):
#text = [batch size, sent len]
text=torch.t(text)
#text = [sent len, batch size]
embed = self.embedding(text)
#embed = [sent len, batch size, embedding dim]
embed = embed.permute(1,2,0)
#embed = [batch size, embedding dim, sent len]
output = F.max_pool1d(embed, embed.size(2))
#output = [batch size, embedding dim,1]
output = output.squeeze(2)
#output = [batch size, embedding dim]
return self.fc(output)
但是,运行代码时出现此错误
---------------------------------------------------------------------------
RuntimeError Traceback (most recent call last)
<ipython-input-11-d82622e3ea00> in <module>()
1 n_epochs=20
----> 2 run_model(model,train_dataloader, test_dataloader,optimizer,criterion,n_epochs)
6 frames
/usr/local/lib/python3.6/dist-packages/torch/nn/functional.py in linear(input, weight, bias)
1368 if input.dim() == 2 and bias is not None:
1369 # fused op is marginally faster
-> 1370 ret = torch.addmm(bias, input, weight.t())
1371 else:
1372 output = input.matmul(weight.t())
RuntimeError: cublas runtime error : resource allocation failed at /pytorch/aten/src/THC/THCGeneral.cpp:216
我们非常感谢您的帮助..............
我使用Tesla K80 GPU和Pytorch 1.x版本在Google Colab中运行了这段代码