如何有两个优化器,一个优化器训练整个参数,而另一个优化器训练部分参数?

时间:2019-12-04 06:49:40

标签: python deep-learning pytorch

我有一个模特:

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = nn.Conv2d(128, 128, (3,3))
        self.conv2 = nn.Conv2d(128, 256, (3,3))
        self.conv3 = nn.Conv2d(256, 256, (3,3))

    def forward(self,):
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = F.relu(self.conv3(x))
        return x

model = MyModel()

我希望以这样一种方式训练模型,即在每个训练步骤DATA_X1中都应该训练  ['conv1', 'conv2', 'conv3']层和DATA_X2应该只训练['conv3']层。

我尝试制作两个优化器:

# Full parameters train
all_params = model.parameters()
all_optimizer = optim.Adam(all_params, lr=0.01)

# Partial parameters train
partial_params = model.parameters()
for p, (name, param) in zip(list(partial_params), model.named_parameters()):
    if name in ['conv3']:
        p.requires_grad = True
    else:
        p.requires_grad = False
partial_optimizer = optim.Adam(partial_params, lr=0.01)

但这会同时影响required_grad = False的优化器

有什么办法可以做到这一点?

1 个答案:

答案 0 :(得分:2)

为什么不将此功能构建到模型中?

class MyModel(nn.Module):
    def __init__(self):
        super(MyModel, self).__init__()
        self.conv1 = nn.Conv2d(128, 128, (3,3))
        self.conv2 = nn.Conv2d(128, 256, (3,3))
        self.conv3 = nn.Conv2d(256, 256, (3,3))
        self.partial_grad = False  # a flag

    def forward(self, x):
        if self.partial_grad:
            with torch.no_grad():
                x = F.relu(self.conv1(x))
                x = F.relu(self.conv2(x))
        else:
            x = F.relu(self.conv1(x))
            x = F.relu(self.conv2(x))     
        x = F.relu(self.conv3(x))
        return x

现在,您可以使用具有所有参数的单个优化器,并且可以根据训练数据打开和关闭model.partial_grad

optimizer.zero_grad()
model.partial_grad = False  # prep for DATA_X1 training
x1, y1 = DATA_X1.item()  # this is not really a code, but you get the point
out = model(x1)
loss = criterion(out, y1)
loss.backward()
optimizer.step()  

# do a partial opt for DATA_X2
optimizer.zero_grad()
model.partial_grad = True  # prep for DATA_X2 training
x2, y2 = DATA_X2.item()  # this is not really a code, but you get the point
out = model(x2)
loss = criterion(out, y2)
loss.backward()
optimizer.step()  

使用单个优化程序会更有利,因为您可以跟踪两个数据集的动量和参数的变化。