从二叉搜索树中删除具有2个子节点的节点

时间:2019-12-04 03:06:00

标签: c binary-search-tree nodes

我正在研究一个C程序,它将以下格式的学生记录扫描并存储到二进制搜索树中。对于BST,我已定义:

struct student
   int id
   char firstname[20]
   char lastname[20]
   float score
   char zipcode[10]

struct node
   struct student data
   struct node* leftChild
   struct node* rightChild

程序的功能之一应该是能够从树中删除记录。该程序要求用户提供将被删除的学生的姓氏。

以下是遍历BST以查找要删除的目标姓氏的方法:

void traverse(node* root, student data)
   if(root != NULL)
      traverse(root->leftChild,data)
      if(strcmp(root->data.lastname,data.lastname) == 0)
         root = delete(root,data)
      traverse(root->rightChild,data)

传递给遍历函数的示例学生结构为:

struct student John
   int id = 1000
   char firstname = John
   char lastname = Adams
   float score = 90.00
   char zipcode = 92121

我与findmin一起使用的delete函数,因为我知道我需要在根(目标节点)的正确子树中找到最小值,以便用它替换目标节点:< / p>

struct node* findmin(struct node* root)
    while(root->leftChild != NULL)
      root = root->leftChild
    return root

struct node* delete(node* root, student data)
  if(root == NULL) // check if empty tree
    return root

  // traverse towards left if ID is less
  else if(data.iD < root->data.iD)
    root->leftChild = delete(root->leftChild,data)

  // towards right if greater than ID
  else if(data.iD > root->data.iD)
    root->rightChild = delete(root->rightChild,data)

  /* else would mean target last name found */
  else
    /* if found node has no child */
    if(root->leftChild == NULL && root->rightChild == NULL)
      free(root)
      root = NULL

    // 1 child
    else if(root->leftChild == NULL) // if left child is NULL
      struct node* temp = root
      root = root->rightChild
      free(temp)
      temp = NULL

    else if(root->rightChild == NULL) // if right child is NULL
      struct node* temp = root
      root = root->leftChild
      free(temp) 
      temp = NULL

    // 2 children
    else
      struct node* temp = findmin(root->rightChild)
      root->data = temp->data
      root->rightChild = delete(root->rightChild,temp->data)

  return root;

我希望在这里发生的事情是,student John将与BST的全局根一起传递到遍历中,并且在打印BST时,student John将被删除并且不再存在。但是,当我通过包含目标姓氏的学生时,该名称仍将存在于树中。此外,当我测试代码并传递要删除的记录时,有时,程序将不删除目标节点,而是删除具有最大学生ID的节点(树中最右边的节点)和/或进行分段问候。故障11.我看不到的代码有缺陷吗?让我知道您是否需要我提供任何进一步的信息来帮助您。

1 个答案:

答案 0 :(得分:0)

遍历功能存在第一个问题。删除节点时,需要更新指向该节点的指针。您没有跟踪它。

这里是使用指向节点指针策略的指针的遍历和删除功能。如您所见,代码变得更加简单。

在此代码中,pRoot是指向根指针的指针。然后,您可以更新它的值。由于删除,您可以将其设置为NULL或另一个节点。

void traverse(node** pRoot, student data){
   if(*pRoot != NULL) {
      traverse(&((*pRoot)->leftChild),data);
      if(strcmp((*pRoot)->data.lastname,data.lastname) == 0)
          delete(pRoot,data);
      traverse(&((*pRoot)->rightChild),data);
}


void delete(node* pRoot, student data)
    if(*pRoot == NULL)
        return;

  node *temp = *pRoot;
  if((*pRoot)->leftChild == NULL)
      *pRoot = (*pRoot)->rightChild;
  else if((*pRoot)->rightChild == NULL){
      *pRoot = (*pRoot)->leftChild;
  else {
      // both children are not NULL :
      // we replace *pRoot with the node with 
      // min ID detached from the rightChild.

      // find node with min ID in right child
      node **pNode = &((*pRoot)->rightChild);
      while((*pNode)->leftChild != NULL)
          pNode = &((*pNode)->leftChild);

      // *pNode is the node with minID
      // its left child is NULL, 
      // but its right child may not be NULL

      // we detach the node with min ID
      node *nNode = *pNode;
      *pNode = nNode->rightChild;

      //replace *pRoot with *nNode
      nNode->rightChild = (*pRoot)->rightChild;
      nNode->leftChild = (*pRoot)->leftChild;
      *pRoot = nNode;
  }
  free(temp);
}

将上述遍历和删除功能组合为一个功能,您将得到

void delete(node** pRoot, student *data){
   if(*pRoot == NULL)
       return;
   delete(&((*pRoot)->leftChild), data);
   detele(&((*pRoot)->rightChild), data);
   if(strcmp((*pRoot)->data.lastname,data->lastname) != 0)
       return;

   // we delete *pRoot

   node *temp = *pRoot;
   if((*pRoot)->leftChild == NULL)
       *pRoot = (*pRoot)->rightChild;
   else if((*pRoot)->rightChild == NULL){
       *pRoot = (*pRoot)->leftChild;
   else {
       // both children are not NULL :
       // we replace *pRoot with the node with 
       // min ID detached from the rightChild.

       // find node with min ID in right child
       node **pNode = &((*pRoot)->rightChild);
       while((*pNode)->leftChild != NULL)
           pNode = &((*pNode)->leftChild);

       // *pNode is the node with minID
       // its left child is NULL, 
       // but its right child may not be NULL

       // we detach the node with min ID
       node *nNode = *pNode;
       *pNode = nNode->rightChild;

       //replace *pRoot with *nNode
       nNode->rightChild = (*pRoot)->rightChild;
       nNode->leftChild = (*pRoot)->leftChild;
       *pRoot = nNode;
   }
   free(temp);
}