为什么`parallelStream`比`CompletableFuture`实现更快?

时间:2019-12-03 22:01:29

标签: java java-stream benchmarking completable-future

我想通过某种操作来提高后端REST API的性能,该操作可以按顺序轮询多个不同的外部API并收集它们的响应,并将它们平整化为一个响应列表。

我最近才了解beforeEach,因此决定尝试一下,并将该解决方案与只将我的CompletableFuture更改为stream的解决方案进行比较。

这是用于基准测试的代码:

parallelStream

有8个(伪)API的列表。每个响应需要4秒钟的时间来执行,并返回4个实体的列表(为简单起见,我们为字符串)。

结果:

  1. package com.alithya.platon; import java.util.Arrays; import java.util.List; import java.util.Objects; import java.util.concurrent.CompletableFuture; import java.util.concurrent.TimeUnit; import java.util.stream.Collectors; import org.junit.jupiter.api.AfterEach; import org.junit.jupiter.api.BeforeEach; import org.junit.jupiter.api.Test; public class ConcurrentTest { static final List<String> REST_APIS = Arrays.asList("api1", "api2", "api3", "api4", "api5", "api6", "api7", "api8"); MyTestUtil myTest = new MyTestUtil(); long millisBefore; // used to benchmark @BeforeEach void setUp() { millisBefore = System.currentTimeMillis(); } @AfterEach void tearDown() { System.out.printf("time taken : %.4fs\n", (System.currentTimeMillis() - millisBefore) / 1000d); } @Test void parallelSolution() { // 4s var parallel = REST_APIS.parallelStream() .map(api -> myTest.collectOneRestCall()) .flatMap(List::stream) .collect(Collectors.toList()); System.out.println("List of responses: " + parallel.toString()); } @Test void futureSolution() throws Exception { // 8s var futures = myTest.collectAllResponsesAsync(REST_APIS); System.out.println("List of responses: " + futures.get()); // only blocks here } @Test void originalProblem() { // 32s var sequential = REST_APIS.stream() .map(api -> myTest.collectOneRestCall()) .flatMap(List::stream) .collect(Collectors.toList()); System.out.println("List of responses: " + sequential.toString()); } } class MyTestUtil { public static final List<String> RESULTS = Arrays.asList("1", "2", "3", "4"); List<String> collectOneRestCall() { try { TimeUnit.SECONDS.sleep(4); // simulating the await of the response } catch (Exception io) { throw new RuntimeException(io); } finally { return MyTestUtil.RESULTS; // always return something, for this demonstration } } CompletableFuture<List<String>> collectAllResponsesAsync(List<String> restApiUrlList) { /* Collecting the list of all the async requests that build a List<String>. */ List<CompletableFuture<List<String>>> completableFutures = restApiUrlList.stream() .map(api -> nonBlockingRestCall()) .collect(Collectors.toList()); /* Creating a single Future that contains all the Futures we just created ("flatmap"). */ CompletableFuture<Void> allFutures = CompletableFuture.allOf(completableFutures .toArray(new CompletableFuture[restApiUrlList.size()])); /* When all the Futures have completed, we join them to create merged List<String>. */ CompletableFuture<List<String>> allCompletableFutures = allFutures .thenApply(future -> completableFutures.stream() .filter(Objects::nonNull) // we filter out the failed calls .map(CompletableFuture::join) .flatMap(List::stream) // creating a List<String> from List<List<String>> .collect(Collectors.toList()) ); return allCompletableFutures; } private CompletableFuture<List<String>> nonBlockingRestCall() { /* Manage the Exceptions here to ensure the wrapping Future returns the other calls. */ return CompletableFuture.supplyAsync(() -> collectOneRestCall()) .exceptionally(ex -> { return null; // gets managed in the wrapping Future }); } } :32秒
  2. stream:4秒
  3. parallelStream:8秒

我很惊讶,并期望最后两个几乎相同。到底是什么造成了这种差异?据我所知,他们俩都使用CompletableFuture

我的天真的解释是ForkJoinPool.commonPool()(因为它是阻塞操作)将实际的parallelStream用于其工作负载,因此与{{1 }}是异步的,因此无法使用该MainThread

1 个答案:

答案 0 :(得分:5)

CompletableFuture.supplyAsync()将最终使用ForkJoinPool并初始化为Runtime.getRuntime().availableProcessors() - 1JDK 11 source)的并行性

因此,看来您有一台8处理器的计算机。因此,池中有7个线程。

有8个API调用,因此一次只能在公共池上运行7个。对于完备的期货测试,将有8个任务在您的主线程阻塞的情况下运行,直到全部完成。 7将能够立即执行,这意味着必须等待4秒钟。

parallelStream()也使用相同的线程池,但是不同之处在于,第一个任务将在执行流的终端操作的主线程上执行,剩下的7个将分配给公共池。因此,在这种情况下,只有足够的线程来并行运行所有内容。尝试将任务数量增加到9,您将获得8秒的运行时间。