如何处理(汇总)R中的数据?

时间:2019-12-03 19:22:19

标签: r dataframe dplyr tidyverse intervals

我有一个数据集,如下所示:

df <- tribble(
  ~id,  ~price, ~number_of_book,        
  "1",    10,         3,        
  "1",     5,         1,         
  "2",     7,         4,
  "2",     6,         2, 
  "2",     3,         4,
  "3",     4,         1,
  "4",     5,         1,
  "4",     6,         1,
  "5",     1,         2,
  "5",     9,         3,
)

从数据集中可以看到,如果id为“ 1”,则有3本书的价格为每本10美元,而有1本书的价格为5美元。基本上,我想查看每个价格区的图书数量所占的百分比。这是我想要的数据集:

df <- tribble(
  ~id,    ~less_than_three,   ~three-five,  ~five-six, ~more_than_six,     
  "1",          "0%",              "25%",     "0%",         "75%",
  "2",          "0%",              "40%",     "20%",        "40%",
  "3",          "0%",              "100%",    "0%",         "0%",  
  "4",          "0%",              "50%",     "50%",        "0%",
  "5",          "40%",             "0%",      "0%",         "60%",
)

现在,我首先将价格汇总。为此,我运行以下代码:

out <- cut(df$price, breaks = c(0, 3, 5, 6, 10),
           labels = c("<3","3-5","5-6", ">6")) 

out = table(out) / sum(table(out)) 

但是不幸的是,由于缺乏编码知识,我无法走得更远。您能帮我获得所需的数据吗?

2 个答案:

答案 0 :(得分:3)

我们可以使用cut获取间隔,然后使用tidyr将数据转换为宽格式,最后使用janitor添加百分比。

library(dplyr)
library(tidyr)
library(janitor)

df %>% 
  mutate(interval = cut(price, c(0,3,5,6,Inf))) %>% 
  select(-price) %>% 
  pivot_wider(names_from = interval, values_from = number_of_book) %>% 
  adorn_percentages()

#>  id (6,Inf] (3,5] (5,6] (0,3]
#>   1    0.75  0.25    NA    NA
#>   2    0.40    NA   0.2   0.4
#>   3      NA  1.00    NA    NA
#>   4      NA  0.50   0.5    NA
#>   5    0.60    NA    NA   0.4

答案 1 :(得分:1)

使用dplyr,您可以添加一列cols,该列将用作列名。然后,您可以将每个ID中每个列的书籍总数相加。接下来,您可以通过将这些数字除以该ID的总和来计算百分比,然后应用scales::percent来格式化为百分比而不是十进制。现在,您只需要ivot_wider给出从中获取名称和值的变量,并对列进行重新排序以匹配原始标签顺序。 (这比其他答案要复杂一些,因为它考虑了给定(id,cols / interval)对的行数大于1,并且看门人简化了这种情况)

labels = c("less_than_three","three_to_five","five_to_six", "more_than_six")

df %>% 
  group_by(id, cols = cut(price, breaks = c(0, 3, 5, 6, 10), labels = labels)) %>% 
  summarise(n = sum(number_of_book)) %>% 
  group_by(id) %>% 
  mutate(pct = scales::percent(n/sum(n), 1)) %>% 
  pivot_wider(id_cols = id, names_from = cols, values_from = pct) %>% 
  select_at(c('id', labels)) %>% 
  ungroup

# # A tibble: 5 x 5
#   id    less_than_three three_to_five five_to_six more_than_six
#   <chr> <chr>           <chr>         <chr>       <chr>        
# 1 1     NA              25%           NA          75%          
# 2 2     40%             NA            20%         40%          
# 3 3     NA              100%          NA          NA           
# 4 4     NA              50%           50%         NA           
# 5 5     40%             NA            NA          60%       

如果要将NA替换为0%(我认为在这种情况下是有意义的,并且与问题中显示的输出匹配),则可以使用下面的注释中提到的方法。

df %>% 
  group_by(id, cols = cut(price, breaks = c(0, 3, 5, 6, 10), labels = labels)) %>% 
  summarise(n = sum(number_of_book)) %>% 
  group_by(id) %>% 
  mutate(pct = scales::percent(n/sum(n), 1)) %>% 
  pivot_wider(id_cols = id, names_from = cols, values_from = pct,
              values_fill = list(pct = '0%')) %>% 
  select_at(c('id', labels)) %>% 
  ungroup

# # A tibble: 5 x 5
#   id    less_than_three three_to_five five_to_six more_than_six
#   <chr> <chr>           <chr>         <chr>       <chr>        
# 1 1     0%              57%           0%          43%          
# 2 2     40%             0%            20%         40%          
# 3 3     0%              100%          0%          0%           
# 4 4     0%              50%           50%         0%           
# 5 5     40%             0%            0%          60%