我无法使用MyNet.apply(init_weights)函数初始化权重。
这些是我的功能:
def init_weights(net):
if type(net) == torch.nn.Module:
torch.nn.init.kaiming_uniform_(net.weight)
net.bias.data.fill_(0.01) # tots els bias a 0.01
我的神经网络如下:
class NeuralNet(torch.nn.Module):
def __init__(self):
super().__init__() # Necessary for torch to detect this class as trainable
# Here define network architecture
self.layer1 = torch.nn.Linear(28**2, 32).to(device) # Linear layer with 32 neurons
self.layer2 = torch.nn.Linear(32, 64).to(device) # Linear layer with 64 neurons
self.layer3 = torch.nn.Linear(64, 128).to(device) # Linear layer with 128 neurons
self.output = torch.nn.Linear(128, 1).to(device) # Linear layer with 1 output neuron (binary output)
def forward(self, x):
# Here define architecture behavior
x = torch.sigmoid(self.layer1(x)).to(device) # x = torch.nn.functional.relu(self.layer1(x))
x = torch.sigmoid(self.layer2(x)).to(device)
x = torch.sigmoid(self.layer3(x)).to(device)
return torch.sigmoid(self.output(x)).to(device) # Binary output
type(net)打印为线性,因此它永远不会进入if语句内,如果我删除它,则会产生以下错误:
AttributeError:“ NeuralNet”对象没有属性“ weight”
答案 0 :(得分:1)
您应该仅初始化线性图层的权重:
def init_weights(net):
if type(net) == torch.nn.Linear:
torch.nn.init.kaiming_uniform_(net.weight)
net.bias.data.fill_(0.01) # tots els bias a 0.01