我正在学习Sagemaker,我有这个切入点:
import os
import tensorflow as tf
from tensorflow.python.estimator.model_fn import ModeKeys as Modes
INPUT_TENSOR_NAME = 'inputs'
SIGNATURE_NAME = 'predictions'
LEARNING_RATE = 0.001
def model_fn(features, labels, mode, params):
# Input Layer
input_layer = tf.reshape(features[INPUT_TENSOR_NAME], [-1, 28, 28, 1])
# Convolutional Layer #1
conv1 = tf.layers.conv2d(
inputs=input_layer,
filters=32,
kernel_size=[5, 5],
padding='same',
activation=tf.nn.relu)
# Pooling Layer #1
pool1 = tf.layers.max_pooling2d(inputs=conv1, pool_size=[2, 2], strides=2)
# Convolutional Layer #2 and Pooling Layer #2
conv2 = tf.layers.conv2d(
inputs=pool1,
filters=64,
kernel_size=[5, 5],
padding='same',
activation=tf.nn.relu)
pool2 = tf.layers.max_pooling2d(inputs=conv2, pool_size=[2, 2], strides=2)
# Dense Layer
pool2_flat = tf.reshape(pool2, [-1, 7 * 7 * 64])
dense = tf.layers.dense(inputs=pool2_flat, units=1024, activation=tf.nn.relu)
dropout = tf.layers.dropout(
inputs=dense, rate=0.4, training=(mode == Modes.TRAIN))
# Logits Layer
logits = tf.layers.dense(inputs=dropout, units=10)
# Define operations
if mode in (Modes.PREDICT, Modes.EVAL):
predicted_indices = tf.argmax(input=logits, axis=1)
probabilities = tf.nn.softmax(logits, name='softmax_tensor')
if mode in (Modes.TRAIN, Modes.EVAL):
global_step = tf.train.get_or_create_global_step()
label_indices = tf.cast(labels, tf.int32)
loss = tf.losses.softmax_cross_entropy(
onehot_labels=tf.one_hot(label_indices, depth=10), logits=logits)
tf.summary.scalar('OptimizeLoss', loss)
if mode == Modes.PREDICT:
predictions = {
'classes': predicted_indices,
'probabilities': probabilities
}
export_outputs = {
SIGNATURE_NAME: tf.estimator.export.PredictOutput(predictions)
}
return tf.estimator.EstimatorSpec(
mode, predictions=predictions, export_outputs=export_outputs)
if mode == Modes.TRAIN:
optimizer = tf.train.AdamOptimizer(learning_rate=0.001)
train_op = optimizer.minimize(loss, global_step=global_step)
return tf.estimator.EstimatorSpec(mode, loss=loss, train_op=train_op)
if mode == Modes.EVAL:
eval_metric_ops = {
'accuracy': tf.metrics.accuracy(label_indices, predicted_indices)
}
return tf.estimator.EstimatorSpec(
mode, loss=loss, eval_metric_ops=eval_metric_ops)
def serving_input_fn(params):
inputs = {INPUT_TENSOR_NAME: tf.placeholder(tf.float32, [None, 784])}
return tf.estimator.export.ServingInputReceiver(inputs, inputs)
def read_and_decode(filename_queue):
reader = tf.TFRecordReader()
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(
serialized_example,
features={
'image_raw': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64),
})
image = tf.decode_raw(features['image_raw'], tf.uint8)
image.set_shape([784])
image = tf.cast(image, tf.float32) * (1. / 255)
label = tf.cast(features['label'], tf.int32)
return image, label
def train_input_fn(training_dir, params):
return _input_fn(training_dir, 'train.tfrecords', batch_size=100)
def eval_input_fn(training_dir, params):
return _input_fn(training_dir, 'test.tfrecords', batch_size=100)
def _input_fn(training_dir, training_filename, batch_size=100):
test_file = os.path.join(training_dir, training_filename)
filename_queue = tf.train.string_input_producer([test_file])
image, label = read_and_decode(filename_queue)
images, labels = tf.train.batch(
[image, label], batch_size=batch_size,
capacity=1000 + 3 * batch_size)
return {INPUT_TENSOR_NAME: images}, labels
def neo_preprocess(payload, content_type):
import logging
import numpy as np
import io
logging.info('Invoking user-defined pre-processing function')
if content_type != 'application/x-image' and content_type != 'application/vnd+python.numpy+binary':
raise RuntimeError('Content type must be application/x-image or application/vnd+python.numpy+binary')
f = io.BytesIO(payload)
image = np.load(f)*255
return image
### NOTE: this function cannot use MXNet
def neo_postprocess(result):
import logging
import numpy as np
import json
logging.info('Invoking user-defined post-processing function')
# Softmax (assumes batch size 1)
result = np.squeeze(result)
result_exp = np.exp(result - np.max(result))
result = result_exp / np.sum(result_exp)
response_body = json.dumps(result.tolist())
content_type = 'application/json'
return response_body, content_type
我正在训练
estimator = TensorFlow(entry_point='cnn_fashion_mnist.py',
role=role,
input_mode='Pipe',
training_steps=1,
evaluation_steps=1,
train_instance_count=1,
output_path=output_path,
train_instance_type='ml.c5.2xlarge',
base_job_name='mnist')
到目前为止,它正在正确尝试,并且告诉我一切都很好,但是当我检查输出时,那里什么都没有,或者如果我尝试部署它,我会收到错误消息,指出它找不到模型,因为存在没有任何东西,想法或其他配置?谢谢
答案 0 :(得分:1)
您确定您的入口点具有真正执行的代码吗?您需要功能之外的“主” /顶层代码。开始训练后,将立即执行此代码。至少在我运行的示例中。
import os
import tensorflow as tf
from tensorflow.python.estimator.model_fn import ModeKeys as Modes
INPUT_TENSOR_NAME = 'inputs'
SIGNATURE_NAME = 'predictions'
LEARNING_RATE = 0.001
ADD CODE FOR CREATION OF ESTIMATOR + TRAIN +....
ADD CODE THAT SAVES YOUR MODEL(e.g. joblib.dump(xxx, path)
除了执行训练外,在您的“ estimator = TensorFlow(...)”之后应加上类似“ estimater.fit(...)”的调用。
您是否已在aws控制台中仔细检查了协议中的培训要求,
答案 1 :(得分:1)
好像您使用的是Tensorflow的较早版本之一。 我们建议通过切换到更新的Tensorflow版本,切换到在SageMaker(脚本模式)下运行Tensorflow的较直接的新方法。
您可以在我们的文档中阅读有关它的更多信息: https://sagemaker.readthedocs.io/en/stable/using_tf.html