我试图在pandas数据框中查找数据:
tidyr::complete(DATA, datetime = seq(min(datetime), max(datetime), by = "1 min"))
如果我在这里拆开数据
$data = array(
'harga_jual' => $this->input->post('harga_jual') == '' ? NULL : $this->input->post('harga_jual')
);
我得到以下信息:
import pandas as pd
import numpy as np
from statsmodels import api as sm
import pandas_datareader.data as web
import datetime
start = datetime.datetime(2016,12,2)
end = datetime.datetime.today()
df = web.get_data_yahoo(['F', '^GSPC'], start, end)
df具有以下数据:
df.unstack()
要在df中查找数据,我正在使用数据透视表:
Attributes Symbols Date
Adj Close F 2016-12-01 1.011866e+01
2016-12-02 9.963994e+00
2016-12-05 1.012680e+01
2016-12-06 1.022449e+01
2016-12-07 1.063152e+01
...
Volume ^GSPC 2019-11-22 3.226780e+09
2019-11-25 3.511530e+09
2019-11-26 4.595590e+09
2019-11-27 3.033090e+09
2019-11-29 1.743020e+11
Length: 9048, dtype: float64
但是我遇到一个错误:
Attributes Adj Close Close High Low Open Volume
Symbols F ^GSPC F ^GSPC F ^GSPC F ^GSPC F ^GSPC F ^GSPC
Date
2015-02-11 12.216836 2068.530029 16.250000 2068.530029 16.309999 2073.479980 16.010000 2057.989990 16.080000 2068.550049 34285300.0 3.596860e+09
2015-02-12 12.299535 2088.479980 16.360001 2088.479980 16.450001 2088.530029 16.299999 2069.979980 16.340000 2069.979980 23738800.0 3.788350e+09
2015-02-13 12.254424 2096.989990 16.299999 2096.989990 16.360001 2097.030029 16.190001 2086.699951 16.330000 2088.780029 19954600.0 3.527450e+09
2015-02-17 12.111583 2100.340088 16.110001 2100.340088 16.299999 2101.300049 16.000000 2089.800049 16.209999 2096.469971 44362300.0 3.361750e+09
2015-02-18 12.186762 2099.679932 16.209999 2099.679932 16.330000 2100.229980 16.059999 2092.149902 16.160000 2099.159912 22812700.0 3.370020e+09
... ... ... ... ... ... ... ... ... ... ... ... ...
2019-11-22 8.890000 3110.290039 8.890000 3110.290039 8.900000 3112.870117 8.770000 3099.260010 8.800000 3111.409912 34966700.0 3.226780e+09
2019-11-25 9.000000 3133.639893 9.000000 3133.639893 9.010000 3133.830078 8.870000 3117.439941 8.900000 3117.439941 30580900.0 3.511530e+09
2019-11-26 9.010000 3140.520020 9.010000 3140.520020 9.020000 3142.689941 8.910000 3131.000000 8.980000 3134.850098 30093800.0 4.595590e+09
2019-11-27 9.100000 3153.629883 9.100000 3153.629883 9.150000 3154.260010 9.020000 3143.409912 9.030000 3145.489990 37396100.0 3.033090e+09
2019-11-29 9.060000 3140.979980 9.060000 3140.979980 9.100000 3150.300049 9.030000 3139.340088 9.040000 3147.179932 13096200.0 1.743020e+11
1210 rows × 12 columns
为什么会出现此错误?
答案 0 :(得分:1)
似乎您已经有了满足您需求的多索引,而不必进行调整。
>>> df['Adj Close'].head()
Symbols F ^GSPC
Date
2016-12-01 10.297861 2191.080078
2016-12-02 10.140451 2191.949951
2016-12-05 10.306145 2204.709961
2016-12-06 10.405562 2212.229980
2016-12-07 10.819797 2241.350098
>>>