假设我有以下数据。 [根据要求,我正在添加数据]
col1 <- c("Team A", "Team A", "Team A", "Team B", "Team B", "Team B", "Team C", "Team C", "Team C", "Team D", "Team D", "Team D")
col2 <- c("High", "Medium", "Medium", "Low", "Low", "Low", "High", "Medium", "Low", "Medium", "Medium", "Medium")
col3 <- c("Yes", "Yes", "No", "No", "No", "Yes", "No", "Yes", "No", "Yes", "Yes", "Yes")
col4 <- c("No", "Yes", "No", "Yes", "Yes", "No", "No", "Yes", "No", "Yes", "No", "Yes")
df <- data.frame(col1, col2, col3, col4)
# Col1 Col2 Col3 Col4
# Team A High Yes No
# Team A Medium Yes Yes
# Team A Medium No No
# Team B Low No Yes
# Team B Low No Yes
# Team B Low Yes No
# Team C High No No
# Team C Medium Yes Yes
# Team C Low No No
# Team D Medium Yes Yes
# Team D Medium Yes No
# Team D Medium Yes Yes
我想使用dplyr
函数来获得以下结果。 Status_1将是Col3对每个团队的“是”的计数,而Status_2将是Col4对每个团队的“是”的计数
High Medium Low Status_1 Status_2
Team A 1 2 0 2 1
Team B 0 0 3 1 2
Team C 1 1 1 1 1
Team D 0 3 0 3 2
我能够使用以下语句为“ Status_1”和“ Status_2”的后两列生成常规摘要。有人可以帮忙吗?
df %>%
group_by(Col1, Col2) %>%
summarise(Count = n()) %>%
spread(Col1, Count, fill = 0)
答案 0 :(得分:2)
我将使用1
和grepl
来简单地计算匹配数:
sum
由reprex package(v0.3.0)于2019-11-30创建
您也可以使用df %>%
mutate_if(is.factor, as.character) %>% # your example data was sotred as factor
group_by(col1) %>%
summarise(High = sum(grepl("High", col2)),
Medium = sum(grepl("Medium", col2)),
Low = sum(grepl("Low", col2)),
Status_1 = sum(grepl("Yes", col3)),
Status_2 = sum(grepl("Yes", col4)))
#> # A tibble: 4 x 6
#> col1 High Medium Low Status_1 Status_2
#> <chr> <int> <int> <int> <int> <int>
#> 1 Team A 1 2 0 2 1
#> 2 Team B 0 0 3 1 2
#> 3 Team C 1 1 1 1 1
#> 4 Team D 0 3 0 3 2
中的grepl
或str_count
代替str_detect
。在这种情况下,所有人都在做相同的事情。重要的是使用stringr
,以便将计数增加到一个值。
答案 1 :(得分:2)
首先,将数据按col1
分组以计算Yes
和col3
中col4
的数量。然后,再次按所有列分组,并使用n()
计算每组中的观察值。最后,使用tidyr::pivot_wider
将数据从长到宽转换。
df %>%
group_by(col1) %>%
mutate_at(vars(col3:col4), ~ sum(. == "Yes")) %>%
rename(status_1 = col3, status_2 = col4) %>%
group_by_all %>%
summarise(n = n()) %>%
tidyr::pivot_wider(names_from = col2, values_from = n, values_fill = list(n = 0))
# # A tibble: 4 x 6
# col1 status_1 status_2 High Medium Low
# <fct> <int> <int> <int> <int> <int>
# 1 Team A 2 1 1 2 0
# 2 Team B 1 2 0 0 3
# 3 Team C 1 1 1 1 1
# 4 Team D 3 2 0 3 0