Pytorch卷积神经网络中的Tensor展平(大小不匹配错误)

时间:2019-11-29 17:26:57

标签: python conv-neural-network pytorch tensor

我用随机像素做了一个可复制的例子。我正在尝试卷积层后为密集层的张量变平。问题在于卷积层和密集层的相交处。我不知道如何放置正确数量的神经元。

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.data import DataLoader

x = np.random.rand(1_00, 3, 100, 100)
y = np.random.randint(0, 2, 1_00)

if torch.cuda.is_available():
    x = torch.from_numpy(x.astype('float32')).cuda()
    y = torch.from_numpy(y.astype('float32')).cuda()

class ConvNet(nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(3, 32, 3)
        self.conv2 = nn.Conv2d(32, 64, 3)
        self.conv3 = nn.Conv2d(64, 128, 3)

        self.fc1 = nn.Linear(128, 1024) # 128 is wrong here
        self.fc2 = nn.Linear(1024, 1)

    def forward(self, x):
        x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv2(x)), (2, 2))
        x = F.max_pool2d(F.relu(self.conv3(x)), (2, 2))
        x = x.view(x.size(0), -1)
        x = F.relu(self.fc1(x))
        x = torch.sigmoid(self.fc2(x))
        return x

net = ConvNet()
net.cuda()
optimizer = optim.Adam(net.parameters(), lr=0.03)
loss_function = nn.BCELoss()

class Train:

    def __init__(self):
        self.len = x.shape[0]
        self.x_train = x
        self.y_train = y

    def __getitem__(self, index):
        return x[index], y[index].unsqueeze(0)

    def __len__(self):
        return self.len

train = Train()
train_loader = DataLoader(dataset=train, batch_size=64, shuffle=True)

epochs = 1
train_losses = list()
for e in range(epochs):
    running_loss = 0
    for images, labels in train_loader:
        optimizer.zero_grad()
        log_ps = net(images)
        loss = loss_function(log_ps, labels)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
    print('It\'s working.')

2 个答案:

答案 0 :(得分:1)

这是我在平整卷积张量时自动适应正确数量的神经元的功能:

def flatten(w, k=3, s=1, p=0, m=True):
    """
    Returns the right size of the flattened tensor after
        convolutional transformation
    :param w: width of image
    :param k: kernel size
    :param s: stride
    :param p: padding
    :param m: max pooling (bool)
    :return: proper shape and params: use x * x * previous_out_channels

    Example:
    r = flatten(*flatten(*flatten(w=100, k=3, s=1, p=0, m=True)))[0]
    self.fc1 = nn.Linear(r*r*128, 1024)
    """
    return int((np.floor((w - k + 2 * p) / s) + 1) / 2 if m else 1), k, s, p, m

在您的情况下:

def __init__(self):
    super().__init__()
    self.conv1 = nn.Conv2d(3, 32, 3)
    self.conv2 = nn.Conv2d(32, 64, 3)
    self.conv3 = nn.Conv2d(64, 128, 3)

    r = flatten(*flatten(*flatten(w=100, k=3, s=1, p=0, m=True)))[0]

    self.fc1 = nn.Linear(r*r*128, 1024)
    self.fc2 = nn.Linear(1024, 1)

    def forward(self, x): ...

答案 1 :(得分:0)

您一定会遇到尺寸不匹配的错误,对吧?

这是因为应用卷积后结果的输出形状为[B, 128, 10, 10],因此.flatten的结果将为[B, 128*10*10]。因此,您需要使用输入大小为12800的线性图层。那应该解决问题。

所以,只需更改

self.fc1 = nn.Linear(128, 1024) # 128 is wrong here

self.fc1 = nn.Linear(12800, 1024)

通常,为了获得合适的尺寸,您可以计算纸上输出的形状,或者仅在正确位置的forward函数中使用print(x.shape)调试语句即可。