我正在尝试确定如何创建一栏来预先指示(X行)何时在另一栏中出现值的下一次出现的熊猫实际上执行以下功能(在这种情况下,X = 3):
df
rowid event indicator
1 True 1 # Event occurs
2 False 0
3 False 0
4 False 1 # Starts indicator
5 False 1
6 True 1 # Event occurs
7 False 0
除了在每行中进行迭代/递归循环外:
i = df.index[df['event']==True]
dfx = [df.index[z-X:z] for z in i]
df['indicator'][dfx]=1
df['indicator'].fillna(0)
但这似乎效率低下,是否有更简洁的方法来实现上述示例?谢谢
答案 0 :(得分:1)
这是使用flatnonzero的基于NumPy
的方法:
X = 3
# ndarray of indices where indicator should be set to one
nd_ixs = np.flatnonzero(df.event)[:,None] - np.arange(X-1, -1, -1)
# flatten the indices
ixs = nd_ixs.ravel()
# filter out negative indices an set to 1
df['indicator'] = 0
df.loc[ixs[ixs>=0], 'indicator'] = 1
print(df)
rowid event indicator
0 1 True 1
1 2 False 0
2 3 False 0
3 4 False 1
4 5 False 1
5 6 True 1
6 7 False 0
其中nd_ixs
是通过广播方式减去索引而获得的,其中event
为True
,范围最大为X
:
print(nd_ixs)
array([[-2, -1, 0],
[ 3, 4, 5]], dtype=int64)
答案 1 :(得分:1)
一种pandas
和numpy
解决方案:
# Make a variable shift:
def var_shift(series, X):
return [series] + [series.shift(i) for i in range(-X + 1, 0, 1)]
X = 3
# Set indicator to default to 1
df["indicator"] = 1
# Use pd.Series.where and np.logical_or with the
# var_shift function to get a bool array, setting
# 0 when False
df["indicator"] = df["indicator"].where(
np.logical_or.reduce(var_shift(df["event"], X)),
0,
)
# rowid event indicator
# 0 1 True 1
# 1 2 False 0
# 2 3 False 0
# 3 4 False 1
# 4 5 False 1
# 5 6 True 1
# 6 7 False 0
In [77]: np.logical_or.reduce(var_shift(df["event"], 3))
Out[77]: array([True, False, False, True, True, True, nan], dtype=object)