Tensorflow对象检测API分类损失增加

时间:2019-11-28 01:44:30

标签: tensorflow object-detection-api

我正在使用自己的数据训练tensorflow对象检测API。我使用的模型是ssd_mobilenet_v1,带有预先训练的可可检查点。
我的数据集包含12个类别,每个类别有110张图像,因此共有1320张图像。
这可以正常工作,但是分类损失有时会增加。
enter image description here

我认为训练阶段的数据集不足并不重要,因为它们都相似。其实我是从视频中提取出来的。

那该怎么办?我应该停止约1万次迭代的训练吗?还是有可能进行参数调整或数据扩充?

这是我的配置文件,我刚刚调整了目录以及data_augmentation_optionhard_example_miner

model {
  ssd {
    num_classes: 12
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }
    image_resizer {
      fixed_shape_resizer {
        height: 320
        width: 180
      }
    }
    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            truncated_normal_initializer {
              stddev: 0.03
              mean: 0.0
            }
          }
          batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
          }
        }
      }
    }
    feature_extractor {
      type: 'ssd_mobilenet_v1'
      min_depth: 16
      depth_multiplier: 1.0
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        }
      }
    }
    loss {
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      hard_example_miner {
        num_hard_examples: 600
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 0
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}

train_config: {
  batch_size: 96
  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.004
          decay_steps: 800720
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }
  fine_tune_checkpoint: "/home/dev1/tensorflow/training/data/checkpoint/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt"
  fine_tune_checkpoint_type:  "detection"
  from_detection_checkpoint: true
  num_steps: 100000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
  data_augmentation_options {
    random_adjust_brightness {
    }
  }
}

train_input_reader: {
  tf_record_input_reader {
    input_path: "/home/dev1/tensorflow/training/data/train.record"
  }
  label_map_path: "/home/dev1/tensorflow/training/data/config/label.pbtxt"
}

eval_config: {
  num_examples: 132
  max_evals: 20
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "/home/dev1/tensorflow/training/data/test.record"
  }
  label_map_path: "/home/dev1/tensorflow/training/data/config/label.pbtxt"
  shuffle: false
  num_readers: 1
}

1 个答案:

答案 0 :(得分:0)

即使在注释部分(感谢Shayan Tabatabaee)中也提供了解决方案(答案部分),也是为了社区的利益。

此问题归因于较高的学习率,已通过将decay_steps800720减少到5000来解决。

请参考下面的修改后的配置文件

model {
  ssd {
    num_classes: 12
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
      }
    }
    image_resizer {
      fixed_shape_resizer {
        height: 320
        width: 180
      }
    }
    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 1
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            truncated_normal_initializer {
              stddev: 0.03
              mean: 0.0
            }
          }
          batch_norm {
            train: true,
            scale: true,
            center: true,
            decay: 0.9997,
            epsilon: 0.001,
          }
        }
      }
    }
    feature_extractor {
      type: 'ssd_mobilenet_v1'
      min_depth: 16
      depth_multiplier: 1.0
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        }
      }
    }
    loss {
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      hard_example_miner {
        num_hard_examples: 600
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 0
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}

train_config: {
  batch_size: 96
  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.004
          decay_steps: 5000
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }
  fine_tune_checkpoint: "/home/dev1/tensorflow/training/data/checkpoint/ssd_mobilenet_v1_coco_2018_01_28/model.ckpt"
  fine_tune_checkpoint_type:  "detection"
  from_detection_checkpoint: true
  num_steps: 100000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
  data_augmentation_options {
    random_adjust_brightness {
    }
  }
}

train_input_reader: {
  tf_record_input_reader {
    input_path: "/home/dev1/tensorflow/training/data/train.record"
  }
  label_map_path: "/home/dev1/tensorflow/training/data/config/label.pbtxt"
}

eval_config: {
  num_examples: 132
  max_evals: 20
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "/home/dev1/tensorflow/training/data/test.record"
  }
  label_map_path: "/home/dev1/tensorflow/training/data/config/label.pbtxt"
  shuffle: false
  num_readers: 1
}