我正在使用SegNet进行图像分割。我有一个我不明白收到以下错误消息的问题:
ValueError:检查输入时出错:预期input_5具有4个维度,但数组的形状为(211、256、256)
我的代码:
def segnet(epochs_num,savename):
# Encoding layer
img_input = Input(shape= (256, 256, 3))
x = Conv2D(64, (3, 3), padding='same', name='conv1',strides= (1,1))(img_input)
x = BatchNormalization(name='bn1')(x)
x = Activation('relu')(x)
x = Conv2D(64, (3, 3), padding='same', name='conv2')(x)
x = BatchNormalization(name='bn2')(x)
x = Activation('relu')(x)
x = MaxPooling2D()(x)
x = Conv2D(128, (3, 3), padding='same', name='conv3')(x)
x = BatchNormalization(name='bn3')(x)
x = Activation('relu')(x)
x = Conv2D(128, (3, 3), padding='same', name='conv4')(x)
x = BatchNormalization(name='bn4')(x)
x = Activation('relu')(x)
x = MaxPooling2D()(x)
x = Conv2D(256, (3, 3), padding='same', name='conv5')(x)
x = BatchNormalization(name='bn5')(x)
x = Activation('relu')(x)
x = Conv2D(256, (3, 3), padding='same', name='conv6')(x)
x = BatchNormalization(name='bn6')(x)
x = Activation('relu')(x)
x = Conv2D(256, (3, 3), padding='same', name='conv7')(x)
x = BatchNormalization(name='bn7')(x)
x = Activation('relu')(x)
x = MaxPooling2D()(x)
x = Conv2D(512, (3, 3), padding='same', name='conv8')(x)
x = BatchNormalization(name='bn8')(x)
x = Activation('relu')(x)
x = Conv2D(512, (3, 3), padding='same', name='conv9')(x)
x = BatchNormalization(name='bn9')(x)
x = Activation('relu')(x)
x = Conv2D(512, (3, 3), padding='same', name='conv10')(x)
x = BatchNormalization(name='bn10')(x)
x = Activation('relu')(x)
x = MaxPooling2D()(x)
x = Conv2D(512, (3, 3), padding='same', name='conv11')(x)
x = BatchNormalization(name='bn11')(x)
x = Activation('relu')(x)
x = Conv2D(512, (3, 3), padding='same', name='conv12')(x)
x = BatchNormalization(name='bn12')(x)
x = Activation('relu')(x)
x = Conv2D(512, (3, 3), padding='same', name='conv13')(x)
x = BatchNormalization(name='bn13')(x)
x = Activation('relu')(x)
x = MaxPooling2D()(x)
x = Dense(1024, activation = 'relu', name='fc1')(x)
x = Dense(1024, activation = 'relu', name='fc2')(x)
# Decoding Layer
x = UpSampling2D()(x)
x = Conv2DTranspose(512, (3, 3), padding='same', name='deconv1')(x)
x = BatchNormalization(name='bn14')(x)
x = Activation('relu')(x)
x = Conv2DTranspose(512, (3, 3), padding='same', name='deconv2')(x)
x = BatchNormalization(name='bn15')(x)
x = Activation('relu')(x)
x = Conv2DTranspose(512, (3, 3), padding='same', name='deconv3')(x)
x = BatchNormalization(name='bn16')(x)
x = Activation('relu')(x)
x = UpSampling2D()(x)
x = Conv2DTranspose(512, (3, 3), padding='same', name='deconv4')(x)
x = BatchNormalization(name='bn17')(x)
x = Activation('relu')(x)
x = Conv2DTranspose(512, (3, 3), padding='same', name='deconv5')(x)
x = BatchNormalization(name='bn18')(x)
x = Activation('relu')(x)
x = Conv2DTranspose(256, (3, 3), padding='same', name='deconv6')(x)
x = BatchNormalization(name='bn19')(x)
x = Activation('relu')(x)
x = UpSampling2D()(x)
x = Conv2DTranspose(256, (3, 3), padding='same', name='deconv7')(x)
x = BatchNormalization(name='bn20')(x)
x = Activation('relu')(x)
x = Conv2DTranspose(256, (3, 3), padding='same', name='deconv8')(x)
x = BatchNormalization(name='bn21')(x)
x = Activation('relu')(x)
x = Conv2DTranspose(128, (3, 3), padding='same', name='deconv9')(x)
x = BatchNormalization(name='bn22')(x)
x = Activation('relu')(x)
x = UpSampling2D()(x)
x = Conv2DTranspose(128, (3, 3), padding='same', name='deconv10')(x)
x = BatchNormalization(name='bn23')(x)
x = Activation('relu')(x)
x = Conv2DTranspose(64, (3, 3), padding='same', name='deconv11')(x)
x = BatchNormalization(name='bn24')(x)
x = Activation('relu')(x)
x = UpSampling2D()(x)
x = Conv2DTranspose(64, (3, 3), padding='same', name='deconv12')(x)
x = BatchNormalization(name='bn25')(x)
x = Activation('relu')(x)
x = Conv2DTranspose(1, (3, 3), padding='same', name='deconv13')(x)
x = BatchNormalization(name='bn26')(x)
x = Activation('sigmoid')(x)
pred = Reshape((256,256))(x)
model = Model(inputs=img_input, outputs=pred)
model.compile(optimizer= SGD(lr=0.001, momentum=0.9, decay=0.0005, nesterov=False), loss= ["binary_crossentropy"]
, metrics=[iou, dice_coef, precision, recall, accuracy])
model.summary()
hist = model.fit(x_train, y_train, epochs= epochs_num, batch_size= 18, validation_data= (x_val, y_val), verbose=1)
model.save(savename)
return model,hist