from bs4 import BeautifulSoup
import requests , sys ,os
import pandas as pd
URL = r"https://www.vault.com/best-companies-to-work-for/law/top-100-law-firms-rankings/year/"
My_list = ['2007','2008','2009','2010','2011','2012','2013','2014','2015','2016','2017','2018','2019','2020']
Year= []
CompanyName = []
Rank = []
Score = []
print('\n>>Process started please wait\n\n')
for I, Page in enumerate(My_list, start=1):
url = r'https://www.vault.com/best-companies-to-work-for/law/top-100-law-firms-rankings/year/{}'.format(Page)
print('\nData fetching from : ',url)
Res = requests.get(url)
soup = BeautifulSoup(Res.content , 'html.parser')
data = soup.find('section',{'class': 'search-result CompanyWorkfor RankingMain FindSchools school-results contrastSection d-flex justify-content-center min-height Rankings CompRank'})
if len(soup) > 0:
print("\n>>Getting page source for :" , url)
else:
print("Please Check url :",url)
for i, item in enumerate(data.find_all("div", {"class": "RankItem"})):
year = item.find("i",{"class":"fa-stack fa-2x"})
Year.append(year)
title = item.find("h3", {"class": "MainLink"}).get_text().strip()
CompanyName.append(title)
rank = item.find("div", {"class": "RankNumber"}).get_text().strip()
Rank.append(rank)
score = item.find("div", {"class": "score"}).get_text().strip()
Score.append(score)
Data = pd.DataFrame({"Year":Year,"CompanyName":CompanyName,"Rank":Rank,"Score":Score})
Data[['First','Score']] = Data.Score.str.split(" " , expand =True,)
Data[['hash','Rank']] = Data.Rank.str.split("#" , expand = True,)
Data.drop(columns = ['hash','First'],inplace = True)
Data.to_csv('Vault_scrap.csv',index = False)
对于每个URL,年份,排名,标题和得分的预期输出数据为100行,但我只有10行。
答案 0 :(得分:1)
您可以像这样遍历年份和页面。
import requests
import pandas as pd
url = 'https://www.vault.com/vault/api/Rankings/LoadMoreCompanyRanksJSON'
def page_loop(year, url):
tableReturn = pd.DataFrame()
for page in range(1,101):
payload = {
'rank': '2',
'year': year,
'category': 'LBACCompany',
'pg': page}
jsonData = requests.get(url, params=payload).json()
if jsonData == []:
return tableReturn
else:
print ('page: %s' %page)
tableReturn = tableReturn.append(pd.DataFrame(jsonData), sort=True).reset_index(drop=True)
return tableReturn
results = pd.DataFrame()
for year in range(2007,2021):
print ("\n>>Getting page source for :" , year)
jsonData = page_loop(year, url)
results = results.append(pd.DataFrame(jsonData), sort=True).reset_index(drop=True)