Phyloseq,如何通过merge_samples获得相对丰度?

时间:2019-11-27 05:29:37

标签: r bioinformatics phyloseq

我正在尝试使用Phyloseq软件包的merge_sample选项获得相对丰度。

当我计算所有样本的每个Phylum的平均值时(我将以GlobalPatterns为例);我的意思是,Globalpaters有26个样本,所以我做了类似的事情

library(phyloseq)
library(plyr)
data(GlobalPatterns)
TGroup <- tax_glom(GlobalPatterns, taxrank = "Phylum")
PGroup <- transform_sample_counts(TGroup, function(x)100* x / sum(x))
OTUg <- otu_table(PGroup)
TAXg <- tax_table(PGroup)[,"Phylum"]
AverageD <- as.data.frame(rowMeans(OTUg))
names(AverageD) <- c("Mean")
GTable <- merge(TAXg, AverageD, by=0, all=TRUE)
GTable$Row.names = NULL
GTable <- GTable[order(desc(GTable$Mean)),]
head(GTable)

我得到类似的东西:

        Phylum           Mean

1 Proteobacteria      29.45550
2 Firmicutes          18.87905
3 Bacteroidetes       17.34374
4 Cyanobacteria       13.70639
5 Actinobacteria      8.93446
6....... More.....

我认为还可以!!!!

但是当我托盘上的法师merge_samples(作者:SampleType):

    ps <- tax_glom(GlobalPatterns, "Phylum")
    ps0 <- transform_sample_counts(ps, function(x)100* x / sum(x))
    ps1 <- merge_samples(ps0, "SampleType")
    ps2 <- transform_sample_counts(ps1, function(x)100* x / sum(x))
    ps3 <- ps2
    otu_table(ps3) <- t(otu_table(ps3)) # transpose the matrix otus !!!
    OTUg <- otu_table(ps3)
    TAXg <- tax_table(ps3)[,"Phylum"]
    GTable <- merge(TAXg, OTUg, by=0, all=TRUE)
    GTable$Row.names = NULL
    GTable$Mean=rowMeans(GTable[,-c(1)], na.rm=TRUE)
    GTable <- GTable[order(desc(GTable$Mean)),]
   head(GTable)

我得到相同的税款,但在“均值”列中的百分比不同:

  Phylum Feces Freshwater Freshwater Mock Ocean Sediment Skin Soil Tongue Mean
1 Proteobacteria  1.58 16.71 18.61 20.10 38.00 71.03 31.98 32.66 44.49 30.57
2 Firmicutes 54.82 0.12 0.65 41.42 0.08 2.53 30.67 0.64 21.67 16.96
3 Bacteroidetes 35.23 11.92 5.07 24.97 31.17 7.01 9.09 9.90 12.28 16.29
4 Cyanobacteria 2.63 30.17 62.57 0.16 19.18 3.24 4.65 0.97 6.61 14.46
5 Actinobacteria 3.47 37.11 1.74 8.39 5.12 1.04 16.78 9.99 7.49 10.13

在这一点上,使用SampleType的merge_samples,每一列(样品)将使分类单元成团,每个样品中每个Phylum的百分比将发生变化(Feces Freshwater Freshwater ...),我知道,但是即使我合并了样品,每个Phylum也必须相同,在这种情况下,均值是不同的(变形杆菌30.57,坚定16.9,拟杆菌16.29 ........)。

任何解决方案或建议吗??

谢谢

1 个答案:

答案 0 :(得分:0)

在第一部分中,您将采用所有样本的均值。在第二个中,您正在使用分组均值的均值。当每组的观察次数相同时,这两个变量才相等。

例如:

# equal n for each group
abundance = seq(0.1,0.6,by=0.1)
group = rep(letters[1:3],each=2)
mean(tapply(abundance,group,mean)) == mean(abundance)
[1] TRUE

# unequal n
abundance = seq(0.1,0.6,by=0.1)
group = rep(letters[1:3],1:3)
mean(tapply(abundance,group,mean)) == mean(abundance)
[1] FALSE

每个SampleType的n不同

TGroup <- tax_glom(GlobalPatterns, taxrank = "Phylum")
PGroup <- transform_sample_counts(TGroup, function(x)100* x / sum(x))
SampleType = sample_data(PGroup)$SampleType
table(SampleType)

SampleType
             Feces         Freshwater Freshwater (creek)               Mock 
                 4                  2                  3                  3 
             Ocean Sediment (estuary)               Skin               Soil 
                 3                  3                  3                  3 
            Tongue 
                 2 

要在各个样本中获得相同的平均丰度,您需要找到每个SampleType的平均丰度,然后取平均值:

mean_PGroup = sapply(levels(SampleType),function(i){
  rowMeans(otu_table(PGroup)[,SampleType==i])
})

phy = tax_table(PGroup)[rownames(mean_PGroup ),"Phylum"]
rownames(mean_PGroup) = phy
head(sort(rowMeans(mean_PGroup),decreasing=TRUE))

 Proteobacteria      Firmicutes   Bacteroidetes   Cyanobacteria  Actinobacteria 
      30.572773       16.956254       16.293286       14.463643       10.126875 
Verrucomicrobia 
       2.774216