我需要将此查询的结果传输到BigQuery,如您所见,我解码了从Cloud Storage中获取的数据,创建了一个Avro文件,将其加载到BigQuery表中,但是收到以下错误:>
BadRequest Traceback (most recent call last)
<ipython-input-8-78860f4800c4> in <module>
110 bucket_name1 = 'gs://new_bucket/insert_transfer/*.avro'
111
--> 112 insert_bigquery_avro(bucket_name1, dataset1, tabela1)
<ipython-input-8-78860f4800c4> in insert_bigquery_avro(target_uri, dataset_id, table_id)
103 )
104 print('Starting job {}'.format(load_job.job_id))
--> 105 load_job.result()
106 print('Job finished.')
107
c:\users\me\appdata\local\programs\python\python37\lib\site-packages\google\cloud\bigquery\job.py in result(self, timeout)
695 self._begin()
696 # TODO: modify PollingFuture so it can pass a retry argument to done().
--> 697 return super(_AsyncJob, self).result(timeout=timeout)
698
699 def cancelled(self):
c:\users\me\appdata\local\programs\python\python37\lib\site-packages\google\api_core\future\polling.py in result(self, timeout)
125 # pylint: disable=raising-bad-type
126 # Pylint doesn't recognize that this is valid in this case.
--> 127 raise self._exception
128
129 return self._result
BadRequest: 400 Error while reading data, error message: The Apache Avro library failed to parse the header with the following error: Unexpected type for default value. Expected null, but found string: "null"
这是脚本过程:
import csv
import base64
import json
import io
import avro.schema
import avro.io
from avro.datafile import DataFileReader, DataFileWriter
import math
import os
import gcloud
from gcloud import storage
from google.cloud import bigquery
from oauth2client.client import GoogleCredentials
from datetime import datetime, timedelta
import numpy as np
try:
script_path = os.path.dirname(os.path.abspath(__file__)) + "/"
except:
script_path = "C:\\Users\\me\\Documents\\Keys\\key.json"
#Bigquery Credentials and settings
os.environ["GOOGLE_APPLICATION_CREDENTIALS"] = script_path
folder = str((datetime.now() - timedelta(days=1)).strftime('%Y-%m-%d'))
bucket_name = 'gs://new_bucket/table/*.csv'
dataset = 'dataset'
tabela = 'table'
schema = avro.schema.Parse(open("C:\\Users\\me\\schema_table.avsc", "rb").read())
writer = DataFileWriter(open("C:\\Users\\me\\table_register.avro", "wb"), avro.io.DatumWriter(), schema)
def insert_bigquery(target_uri, dataset_id, table_id):
bigquery_client = bigquery.Client()
dataset_ref = bigquery_client.dataset(dataset_id)
job_config = bigquery.LoadJobConfig()
job_config.schema = [
bigquery.SchemaField('id','STRING',mode='REQUIRED')
]
job_config.source_format = bigquery.SourceFormat.CSV
job_config.field_delimiter = ";"
uri = target_uri
load_job = bigquery_client.load_table_from_uri(
uri,
dataset_ref.table(table_id),
job_config=job_config
)
print('Starting job {}'.format(load_job.job_id))
load_job.result()
print('Job finished.')
#insert_bigquery(bucket_name, dataset, tabela)
def get_data_from_bigquery():
"""query bigquery to get data to import to PSQL"""
bq = bigquery.Client()
#Busca IDs
query = """SELECT id FROM dataset.base64_data"""
query_job = bq.query(query)
data = query_job.result()
rows = list(data)
return rows
a = get_data_from_bigquery()
length = len(a)
line_count = 0
for row in range(length):
bytes = base64.b64decode(str(a[row][0]))
bytes = bytes[5:]
buf = io.BytesIO(bytes)
decoder = avro.io.BinaryDecoder(buf)
rec_reader = avro.io.DatumReader(avro.schema.Parse(open("C:\\Users\\me\\schema_table.avsc").read()))
out=rec_reader.read(decoder)
writer.append(out)
writer.close()
def upload_blob(bucket_name, source_file_name, destination_blob_name):
storage_client = storage.Client()
bucket = storage_client.get_bucket(bucket_name)
blob = bucket.blob("insert_transfer/" + destination_blob_name)
blob.upload_from_filename(source_file_name)
print('File {} uploaded to {}'.format(
source_file_name,
destination_blob_name
))
upload_blob('new_bucket', 'C:\\Users\\me\\table_register.avro', 'table_register.avro')
def insert_bigquery_avro(target_uri, dataset_id, table_id):
bigquery_client = bigquery.Client()
dataset_ref = bigquery_client.dataset(dataset_id)
job_config = bigquery.LoadJobConfig()
job_config.autodetect = True
job_config.source_format = bigquery.SourceFormat.AVRO
time_partitioning = bigquery.table.TimePartitioning(type_=bigquery.TimePartitioningType.DAY, field="date")
job_config.time_partitioning = time_partitioning
uri = target_uri
load_job = bigquery_client.load_table_from_uri(
uri,
dataset_ref.table(table_id),
job_config=job_config
)
print('Starting job {}'.format(load_job.job_id))
load_job.result()
print('Job finished.')
dataset1 = 'dataset'
tabela1 = 'table'
bucket_name1 = 'gs://new_bucket/insert_transfer/*.avro'
insert_bigquery_avro(bucket_name1, dataset1, tabela1)
我在Cloud Storage中收到这样的CSV文件:
这个脚本像这样解码寄存器:
我想创建一个例程,将解码后的信息放入BigQuery中。
架构文件:
{
"namespace": "transfers",
"type": "record",
"name": "Transfer",
"doc": "Represents the The transfer request",
"fields": [
{
"name": "id",
"type": "string",
"doc": "the transfer request id"
},
{
"name": "date",
"type": {
"type": "long",
"logicalType": "timestamp-millis"
},
"doc": "the date where the transaction happend"
},
{
"name": "merchant",
"type": "string",
"doc": "the merchant who owns the payment"
},
{
"name": "amount",
"type": ["null", {
"type": "bytes",
"logicalType": "decimal",
"precision": 4,
"scale": 2
}],
"default": "null",
"doc": "the foreign amount for the payment"
},
{
"name": "status",
"type": {
"type": "enum",
"name": "transfer_status",
"symbols": [
"RECEIVED",
"WAITING_TRANSFER",
"ON_PROCESSING",
"EXECUTED",
"DENIED"
]
},
"default": "DENIED"
},
{
"name": "correlation_id",
"type": ["null", "string"],
"default": "null",
"doc": "the correlation id of the request"
},
{
"name": "transfer_period",
"type": ["null", "string"],
"default": "null",
"doc": "The transfer period spec"
},
{
"name": "payments",
"type": {
"type": "array",
"items": "string"
}
},
{
"name": "metadata",
"type": {
"type": "map",
"values": "string"
}
},
{
"name": "events",
"type": {
"type": "array",
"items": {
"name": "event",
"type": "record",
"fields": [
{
"name": "id",
"type": "string"
},
{
"name": "type",
"type": {
"type": "enum",
"name": "event_type",
"symbols": [
"REQUEST",
"VALIDATION",
"TRANSFER_SCHEDULE",
"TRANSFERENCE"
]
}
},
{
"name": "amount",
"type": ["null", {
"type": "bytes",
"logicalType": "decimal",
"precision": 4,
"scale": 2
}],
"doc": "the original currency amount",
"default": "null"
},
{
"name": "date",
"type": {
"type": "long",
"logicalType": "timestamp-millis"
},
"doc": "the moment where this request was received by the platform"
},
{
"name": "status",
"type": {
"type": "enum",
"name": "event_status",
"symbols": [
"SUCCESS",
"DENIED",
"ERROR",
"TIMEOUT",
"PENDING"
]
}
},
{
"name": "metadata",
"type": {
"type": "map",
"values": "string"
}
},
{
"name": "internal_metadata",
"type": {
"type": "map",
"values": "string"
}
},
{
"name": "error",
"type": {
"type": "record",
"name": "Error",
"fields": [
{
"name": "code",
"type": ["null", "string"],
"default": "null"
},
{
"name": "message",
"type": ["null", "string"],
"default": "null"
}
]
}
},
{
"name": "message",
"type": ["null", "string"],
"default": "null"
}
]
}
}
}
]
}