我正在尝试为机器人自动驾驶汽车构建一个NN。运行代码时,我发现GPU使用率约为1%,内存使用率是8Gb RAM(NVIDIA RTX 2070)。 我想知道我是否可以加快学习过程并使用GPU的更多功能。
问题是我无法使用多重处理,因为在Windows上出现错误。 这是代码:
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
from keras.models import Sequential
from keras.optimizers import Adam
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense
from keras.utils.np_utils import to_categorical
from sklearn.utils import shuffle
from sklearn.model_selection import train_test_split
from imgaug import augmenters
import cv2
import pandas as pd
import ntpath
import random
import time
# os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
datadir = "../training/data/csv/"
imagedir = "../training/data/images/"
columns = ["image", "direction"]
data = pd.read_csv(os.path.join(datadir, "data.csv"), names=columns)
pd.set_option("display.max_colwidth", -1)
pd.set_option("display.max_columns", None)
pd.set_option("display.width", None)
num_bins = 25
samples_per_bin = 2000
def path_leaf(path):
head, tail = ntpath.split(path)
return tail
def show_all_data():
print(data.describe())
print(data.head())
def cut_image_path():
data["center"] = imagedir + data["center"].apply(path_leaf)
data["left"] = imagedir + data["left"].apply(path_leaf)
data["right"] = imagedir + data["right"].apply(path_leaf)
def show_initial_steering_data():
i_hist, i_bins = np.histogram(data["direction"], num_bins)
center = (i_bins[:-1] + i_bins[1:]) * 0.5
plt.bar(center, i_hist, width=0.05)
plt.title("Direction data")
plt.xlabel("Direction")
plt.ylabel("Number of data")
plt.plot((np.min(data["direction"]), np.max(data["direction"])), (samples_per_bin, samples_per_bin))
plt.show()
show_all_data()
# show_initial_steering_data()
# hist, bins = np.histogram(data["direction"], num_bins)
# remove_list = []
# for i in range(num_bins):
# list_ = []
# for j in range(len(data["direction"])):
# if bins[i] <= data["direction"][j] <= bins[i + 1]:
# list_.append(j)
# list_ = shuffle(list_)
# list_ = list_[samples_per_bin:]
# remove_list.extend(list_)
#
# data.drop(data.index[remove_list], inplace=True)
def show_modified_steering_data():
m_hist, _ = np.histogram(data['direction'], num_bins)
center = (bins[:-1] + bins[1:]) * 0.5
plt.bar(center, m_hist, width=0.05)
plt.plot((np.min(data['direction']), np.max(data['v'])), (samples_per_bin, samples_per_bin))
plt.show()
# show_modified_steering_data()
def load_data():
image_paths = data["image"].values
steerings = data["direction"].values
return train_test_split(image_paths, steerings, test_size=0.2, random_state=5)
def zoom_image(image):
zoom = augmenters.Affine(scale=(1, 1.3))
return zoom.augment_image(image)
def pan_image(image):
pan = augmenters.Affine(translate_percent={"x": (-0.1, 0.1), "y": (-0.1, 0.1)})
return pan.augment_image(image)
def image_brightness(image):
brightness = augmenters.Multiply((0.1, 2))
return brightness.augment_image(image)
def flip_image(image, steering_angle):
# We need to "flip" also the steering angle as the image as flipped
image = cv2.flip(image, 1)
if steering_angle == "0":
steering_angle = "2"
elif steering_angle == "2":
steering_angle = "0"
return image, steering_angle
def augment_image(image, steering_angle):
image = mpimg.imread("../training/data/" + image)
if np.random.rand() < 0.5:
image = pan_image(image)
if np.random.rand() < 0.5:
image = zoom_image(image)
if np.random.rand() < 0.5:
image = image_brightness(image)
if np.random.rand() < 0.5:
image, steering_angle = flip_image(image, steering_angle)
return image, steering_angle
def image_preprocess(image):
image = cv2.cvtColor(image, cv2.COLOR_RGB2YUV)
image = cv2.GaussianBlur(image, (3, 3), 0)
image = cv2.resize(image, (200, 66)) # Image input size of the Nvidia model architecture
image = (image / 127.5) - 1
return image
def batch_generator(image_paths, steering_angles, batch_size, is_training):
while True:
batch_image = []
batch_steering = []
for _ in range(batch_size):
index = random.randint(0, len(image_paths) - 1)
image = image_paths[index]
steering_angle = steering_angles[index]
if is_training:
image, steering_angle = augment_image(image, steering_angle)
else:
image = mpimg.imread("../training/data/" + image)
steering_angle = steering_angle
image = image_preprocess(image)
batch_image.append(image)
batch_steering.append(steering_angle)
yield (np.asarray(batch_image), np.asarray(batch_steering))
def nvidia_model():
import keras
"""
NVIDIA model used
Image normalization to avoid saturation and make gradients work better.
Convolution: 5x5, filter: 24, strides: 2x2, activation: ELU
Convolution: 5x5, filter: 36, strides: 2x2, activation: ELU
Convolution: 5x5, filter: 48, strides: 2x2, activation: ELU
Convolution: 3x3, filter: 64, strides: 1x1, activation: ELU
Convolution: 3x3, filter: 64, strides: 1x1, activation: ELU
Drop out (0.5)
Fully connected: neurons: 100, activation: ELU
Fully connected: neurons: 50, activation: ELU
Fully connected: neurons: 10, activation: ELU
Fully connected: neurons: 1 (output)
# the convolution layers are meant to handle feature engineering
the fully connected layer for predicting the steering angle.
dropout avoids overfitting
ELU(Exponential linear unit) function takes care of the Vanishing gradient problem.
"""
model = Sequential()
model.add(Conv2D(filters=24, kernel_size=(5, 5), strides=(2, 2), input_shape=(66, 200, 3), activation="elu"))
model.add(Conv2D(filters=36, kernel_size=(5, 5), strides=(2, 2), activation="elu"))
model.add(Conv2D(filters=48, kernel_size=(5, 5), strides=(2, 2), activation="elu"))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="elu"))
model.add(Conv2D(filters=64, kernel_size=(3, 3), activation="elu"))
model.add(Flatten())
model.add(Dense(units=100, activation="elu"))
model.add(Dense(units=50, activation="elu"))
model.add(Dense(units=10, activation="elu"))
model.add(Dense(units=3, activation='softmax'))
optimizer = Adam(lr=1e-4)
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer=optimizer)
return model
nvidia_model = nvidia_model()
print(nvidia_model.summary())
start_time = time.clock()
# cut_image_path()
X_train, X_valid, y_train, y_valid = load_data()
y_train = to_categorical(y_train, 3)
y_valid = to_categorical(y_valid, 3)
history = nvidia_model.fit_generator(batch_generator(X_train, y_train, 32, True),
steps_per_epoch=len(X_train),
epochs=30,
validation_data=batch_generator(X_valid, y_valid, 32, False),
validation_steps=200,
verbose=True,
shuffle=True,
use_multiprocessing=True,
workers=4)
print("--- trained in %s seconds ---" % (time.clock() - start_time))
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.legend(['training', 'validation'])
plt.title('Loss')
plt.xlabel('Epoch')
plt.show()
nvidia_model.save('nvidiaModel.h5')
运行程序时,如果不使用多重处理,则会得到以下初始输出:
C:/Users/bacci/PycharmProjects/AutoPilot Server/model/keras_model.py:111: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
if steering_angle == "0":
C:/Users/bacci/PycharmProjects/AutoPilot Server/model/keras_model.py:113: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison
elif steering_angle == "2":
2019-11-25 22:46:24.466874: I tensorflow/core/platform/cpu_feature_guard.cc:142] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2019-11-25 22:46:24.469217: I tensorflow/stream_executor/platform/default/dso_loader.cc:42] Successfully opened dynamic library nvcuda.dll
2019-11-25 22:46:24.492182: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1640] Found device 0 with properties:
name: GeForce RTX 2070 major: 7 minor: 5 memoryClockRate(GHz): 1.62
pciBusID: 0000:01:00.0
2019-11-25 22:46:24.492442: I tensorflow/stream_executor/platform/default/dlopen_checker_stub.cc:25] GPU libraries are statically linked, skip dlopen check.
2019-11-25 22:46:24.493160: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1763] Adding visible gpu devices: 0
2019-11-25 22:46:24.995291: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1181] Device interconnect StreamExecutor with strength 1 edge matrix:
2019-11-25 22:46:24.995504: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1187] 0
2019-11-25 22:46:24.995644: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1200] 0: N
2019-11-25 22:46:24.996476: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1326] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6314 MB memory) -> physical GPU (device: 0, name: GeForce RTX 2070, pci bus id: 0000:01:00.0, compute capability: 7.5)
如果我使用多重处理,则会出现此错误:
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...
The "freeze_support()" line can be omitted if the program
is not going to be frozen to produce an executable.
我该怎么办?