RuntimeError:输入类型(torch.FloatTensor)和权重类型(torch.cuda.FloatTensor)应该相同

时间:2019-11-23 23:08:32

标签: python machine-learning gpu pytorch

我正在尝试如下训练以下CNN,但对于.cuda()我仍然遇到相同的错误,并且不确定如何解决。到目前为止,这是我的大部分代码。

import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
import torchvision
from torchvision import datasets, transforms, models
from torch.utils.data.sampler import SubsetRandomSampler


data_dir = "/home/ubuntu/ML2/ExamII/train2/"
valid_size = .2

# Normalize the test and train sets with torchvision
train_transforms = transforms.Compose([transforms.Resize(224),
                                           transforms.ToTensor(),
                                           ])

test_transforms = transforms.Compose([transforms.Resize(224),
                                          transforms.ToTensor(),
                                          ])

# ImageFolder class to load the train and test images
train_data = datasets.ImageFolder(data_dir, transform=train_transforms)
test_data = datasets.ImageFolder(data_dir, transform=test_transforms)


# Number of train images
num_train = len(train_data)
indices = list(range(num_train))
# Split = 20% of train images
split = int(np.floor(valid_size * num_train))
# Shuffle indices of train images
np.random.shuffle(indices)
# Subset indices for test and train
train_idx, test_idx = indices[split:], indices[:split]
# Samples elements randomly from a given list of indices
train_sampler = SubsetRandomSampler(train_idx)
test_sampler = SubsetRandomSampler(test_idx)
# Batch and load the images
trainloader = torch.utils.data.DataLoader(train_data, sampler=train_sampler, batch_size=1)
testloader = torch.utils.data.DataLoader(test_data, sampler=test_sampler, batch_size=1)


#print(trainloader.dataset.classes)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models.resnet50(pretrained=True)

model.fc = nn.Sequential(nn.Linear(2048, 512),
                                 nn.ReLU(),
                                 nn.Dropout(0.2),
                                 nn.Linear(512, 10),
                                 nn.LogSigmoid())
                                 # nn.LogSoftmax(dim=1))
# criterion = nn.NLLLoss()
criterion = nn.BCELoss()
optimizer = optim.Adam(model.fc.parameters(), lr=0.003)
model.to(device)

#Train the network
for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

但是,我一直在控制台中收到此错误: RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same

关于如何解决它的任何想法?我读到该模型可能尚未推送到我的GPU中,但不确定如何修复。谢谢!

5 个答案:

答案 0 :(得分:4)

您的神经网络位于GPU上,但您的输入却不在。因此,您需要将输入张量发送到CUDA。

inputs, labels = data
inputs, labels = inputs.cuda(), labels.cuda() # add this line

或者像这样,与其余代码保持一致:

inputs, labels = inputs.to(device), labels.to(device)

答案 1 :(得分:4)

新的API将使用.to()方法。

优势显而易见,而且很重要。 明天您的设备可能不是“ cuda”:

  • cpu
  • cuda
  • mkldnn
  • opengl
  • opencl
  • ideep
  • hip
  • msnpu
  • xla

因此,请避免使用model.cuda() 检查设备没有错

dev = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")

或对其进行硬编码:

dev=torch.device("cuda") 

与:

dev="cuda"

通常,您可以使用以下代码:

model.to(dev)
data = data.to(dev)

答案 2 :(得分:0)

正如前面的答案中已经提到的那样,问题可能在于您的模型是在GPU上训练的,但是已经在CPU上进行了测试。如果是这种情况,则需要像这样将模型的权重和数据从GPU移植到CPU:

device = args.device # "cuda" / "cpu"
if "cuda" in device and not torch.cuda.is_available():
    device = "cpu"
data = data.to(device)
model.to(device)

注意:在这里,我们仍然检查配置参数是否设置为GPU或CPU,以便这段代码可用于训练(在GPU上)和测试(在CPU上)。

答案 3 :(得分:0)

   * when you get this error::RuntimeError: Input type 
   (torch.FloatTensor) and weight type (torch.cuda.FloatTensor should 
   be the same
   # Move tensors to GPU is CUDA is available
   # Check if CUDA is available

  train_on_gpu = torch.cuda.is_available()

  If train_on_gpu:
      print("CUDA is available! Training on GPU...")
  else:
      print("CUDA is not available. Training on CPU...")

 -------------------
 # Move tensors to GPU is CUDA is available
if train_on_gpu:

model.cuda()

答案 4 :(得分:-1)

首次检查cuda是否可用:

  if torch.cuda.is_available():
      device = 'cuda'
  else:
      device = 'cpu'

如果要加载某些模型,请执行以下操作:

  checkpoint = torch.load('./generator_release.pth', map_location=device)
  G = Generator().to(device)

现在您可能会遇到此错误:

RuntimeError:输入类型(torch.FloatTensor)和重量类型(torch.cuda.FloatTensor)应该相同

需要通过以下方式将输入数据的类型从torch.tensor转换为torch.cuda.tensor:

if torch.cuda.is_available():
  data = data.cuda()
result = G(data)

,然后将结果从torch.cuda.tensor转换为torch.tensor:

if torch.cuda.is_available():
    result = result.cpu()