连接两个熊猫数据框失败

时间:2019-11-23 06:05:46

标签: python pandas

我有两个看起来像这样的熊猫数据框:

df_out

Prediction       count_human  count_bot  %_bot_tweets
username
666STEVEROGERS             8        131      0.942446
ADELE_BROCK                0        126      1.000000
ADRIANAMFTTT              99          0      0.000000
AHMADRADJAB                0        108      1.000000
ALBERTA_HAYNESS          101          0      0.000000
ALTMANBELINDA              0        139      1.000000
ALVA_MC_GHEE              29        104      0.781955
ANGELITHSS                 0        113      1.000000
ANN1EMCCONNELL             0        125      1.000000
ANWARJAMIL22               0        112      1.000000
AN_N_GASTON                0        107      1.000000
ARONHOLDEN8               89         31      0.258333
ARTHCLAUDIA                0        103      1.000000
ASSUNCAOWALLAS             0        108      1.000000
BECCYWILL                  0        132      1.000000
BELOZEROVNIKIT           132          8      0.057143
BEN_SAR_GENT              24         84      0.777778
BERT_HENLEY              105          0      0.000000
BISHOLORINE                0        117      1.000000
BLACKERTHEBERR5            4        100      0.961538
BLACKTIVISTSUS            49         68      0.581197
BLACK_ELEVATION           32         74      0.698113
BOGDANOVAO2                0        127      1.000000
BREMENBOTE                70         39      0.357798
B_stever96                 0        171      1.000000
CALIFRONIAREP             60         72      0.545455
C_dos_94                   0        121      1.000000
Cassidygirly               0        153      1.000000
ChuckSpeaks_               0        185      1.000000
Cyabooty                 111          0      0.000000
DurkinSays                 0        131      1.000000
LSU_studyabroad          117          0      0.000000
MisMonWEXP               131          0      0.000000
NextLevel_Mel              0        185      1.000000
PeterDuca                108          0      0.000000
ShellMarcel                0         97      1.000000
Sir_Fried_Alott            0        144      1.000000
XavierRivera_            197          0      0.000000
ZacharyFlair             213          0      0.000000
brentvarney44              0        126      1.000000
cbars68                  225          0      0.000000
chloeschultz11             0        106      1.000000
hoang_le_96                0        104      1.000000
kdougherty178              0        127      1.000000
lasallephilo             138          0      0.000000
lovely_cunt_               0        137      1.000000
megliebsch                 0        217      1.000000
msimps_15                138          0      0.000000
okweightlossdna          105          0      0.000000
tankthe_hank             231          0      0.000000

还有knn_res

      following  followers        username  Prediction  is_bot
0           199         77      megliebsch           1       0
1           199         77      megliebsch           1       0
2           199         77      megliebsch           1       0
3           199         77      megliebsch           1       0
4           199         77      megliebsch           1       0
...         ...        ...             ...         ...     ...
6643         67         57  ASSUNCAOWALLAS           1       1
6644         67         57  ASSUNCAOWALLAS           1       1
6645         67         57  ASSUNCAOWALLAS           1       1
6646         67         57  ASSUNCAOWALLAS           1       1
6647         67         57  ASSUNCAOWALLAS           1       1

我想要做的是,对于username中的每个df_out,左键连接到knn_res以获得followingfollowers的值。 / p>

在SQL中,我可以这样做: SELECT a.*, b.following, b.followers FROM df_out a LEFT JOIN knn_res b ON a.username = b.username

我尝试过:

test_df = df_out
test_df.set_index('username').join(knn_res.set_index('username'), on='username', how='left')
print(test_df)

哪个产生了:

  File "C:\Python367-64\lib\site-packages\pandas\core\frame.py", line 4396, in set_index
    raise KeyError("None of {} are in the columns".format(missing))
KeyError: "None of ['username'] are in the columns"

我在做什么错?我试图引用this documentation for the problem

更新

我还尝试了inner join,其结果完全相同:

  File "C:\Python367-64\lib\site-packages\pandas\core\frame.py", line 4396, in set_index
    raise KeyError("None of {} are in the columns".format(missing))
KeyError: "None of ['username'] are in the columns"

df_out使用以下方法创建:

df_out = (knn_res.groupby(['username', 'Prediction']).is_bot.count().unstack(fill_value=0).
             rename({0: 'count_human', 1: 'count_bot'}, axis= 1))

df_out['%_bot_tweets'] = df_out['count_bot'] / (df_out['count_bot'] + df_out['count_human'])

1 个答案:

答案 0 :(得分:1)

尝试一下。默认的join选项为left,因此您无需指定它。两个数据框都以username作为索引,而join则适用于索引,因此您也不需要指定on选项。最后,您只想连接followingfollowers列,因此在将username设置为索引之后,只需将这2列切成薄片进行连接。 (注意:要将原始数据帧复制到copy()时应使用test_df,因为没有copy()时,它们都指向同一个数据帧对象

test_df = df_out.copy()
test_df = test_df.join(knn_res.set_index('username')[['following', 'followers']])
print(test_df)

Out[93]:
                 count_human  count_bot  %_bot_tweets  following  followers
username
666STEVEROGERS             8        131      0.942446        NaN        NaN
ADELE_BROCK                0        126      1.000000        NaN        NaN
ADRIANAMFTTT              99          0      0.000000        NaN        NaN
AHMADRADJAB                0        108      1.000000        NaN        NaN
ALBERTA_HAYNESS          101          0      0.000000        NaN        NaN
ALTMANBELINDA              0        139      1.000000        NaN        NaN
ALVA_MC_GHEE              29        104      0.781955        NaN        NaN
ANGELITHSS                 0        113      1.000000        NaN        NaN
ANN1EMCCONNELL             0        125      1.000000        NaN        NaN
ANWARJAMIL22               0        112      1.000000        NaN        NaN
AN_N_GASTON                0        107      1.000000        NaN        NaN
ARONHOLDEN8               89         31      0.258333        NaN        NaN
ARTHCLAUDIA                0        103      1.000000        NaN        NaN
ASSUNCAOWALLAS             0        108      1.000000       67.0       57.0
ASSUNCAOWALLAS             0        108      1.000000       67.0       57.0
ASSUNCAOWALLAS             0        108      1.000000       67.0       57.0
ASSUNCAOWALLAS             0        108      1.000000       67.0       57.0
ASSUNCAOWALLAS             0        108      1.000000       67.0       57.0
BECCYWILL                  0        132      1.000000        NaN        NaN
BELOZEROVNIKIT           132          8      0.057143        NaN        NaN
BEN_SAR_GENT              24         84      0.777778        NaN        NaN
BERT_HENLEY              105          0      0.000000        NaN        NaN
BISHOLORINE                0        117      1.000000        NaN        NaN
BLACKERTHEBERR5            4        100      0.961538        NaN        NaN
BLACKTIVISTSUS            49         68      0.581197        NaN        NaN
BLACK_ELEVATION           32         74      0.698113        NaN        NaN
BOGDANOVAO2                0        127      1.000000        NaN        NaN
BREMENBOTE                70         39      0.357798        NaN        NaN
B_stever96                 0        171      1.000000        NaN        NaN
CALIFRONIAREP             60         72      0.545455        NaN        NaN
C_dos_94                   0        121      1.000000        NaN        NaN
Cassidygirly               0        153      1.000000        NaN        NaN
ChuckSpeaks_               0        185      1.000000        NaN        NaN
Cyabooty                 111          0      0.000000        NaN        NaN
DurkinSays                 0        131      1.000000        NaN        NaN
LSU_studyabroad          117          0      0.000000        NaN        NaN
MisMonWEXP               131          0      0.000000        NaN        NaN
NextLevel_Mel              0        185      1.000000        NaN        NaN
PeterDuca                108          0      0.000000        NaN        NaN
ShellMarcel                0         97      1.000000        NaN        NaN
Sir_Fried_Alott            0        144      1.000000        NaN        NaN
XavierRivera_            197          0      0.000000        NaN        NaN
ZacharyFlair             213          0      0.000000        NaN        NaN
brentvarney44              0        126      1.000000        NaN        NaN
cbars68                  225          0      0.000000        NaN        NaN
chloeschultz11             0        106      1.000000        NaN        NaN
hoang_le_96                0        104      1.000000        NaN        NaN
kdougherty178              0        127      1.000000        NaN        NaN
lasallephilo             138          0      0.000000        NaN        NaN
lovely_cunt_               0        137      1.000000        NaN        NaN
megliebsch                 0        217      1.000000      199.0       77.0
megliebsch                 0        217      1.000000      199.0       77.0
megliebsch                 0        217      1.000000      199.0       77.0
megliebsch                 0        217      1.000000      199.0       77.0
megliebsch                 0        217      1.000000      199.0       77.0
msimps_15                138          0      0.000000        NaN        NaN
okweightlossdna          105          0      0.000000        NaN        NaN
tankthe_hank             231          0      0.000000        NaN        NaN