我已经下载了流转移数据表(“ df_download”)。该表的列名主要取自计量站的ID号。
我想有条件地用站名文本替换列名使用的ID号,这将有助于在共享结果时使数据更易读。我创建了一个带有ID号和站名的表(“ stationID”),用作更改“ df_download”列名的参考。
我可以单独替换列名,但是我想编写某种循环,以解决“ df_download”的所有列并更改数据帧“ stationID”中引用的列的名称。
下面是我要尝试的示例。
下载的数据(“ df_download”)
部分下载的数据与此类似:
df_downloaded <- data.frame(Var1 = seq(as.Date("2012-01-01"),as.Date("2012-12-01"), by="month"),
Var2 = sample(50:150,12, replace =TRUE),
Var3 = sample(10:100,12, replace =TRUE),
Var4 = sample(15:45,12, replace =TRUE),
Var5 = sample(50:200,12, replace =TRUE),
Var6 = sample(15:100,12, replace =TRUE),
Var7 = c(rep(0,3),rep(13,6),rep(0,3)),
Var8 = rep(5,12))
colnames(df_downloaded) <- c("Diversion.Date","360410059","360410060",
"360410209","361000655","361000656","Irrigation","Seep")
df_download # not run
#
# Diversion.Date 360410059 360410060 360410209 361000655 361000656 Irrigation Seep
# 1 2012-01-01 93 57 28 101 16 0 5
# 2 2012-02-01 102 68 19 124 98 0 5
# 3 2012-03-01 124 93 36 109 56 0 5
# 4 2012-04-01 94 96 23 54 87 13 5
# 5 2012-05-01 83 70 43 119 15 13 5
# 6 2012-06-01 78 63 45 195 15 13 5
# 7 2012-07-01 86 77 20 130 63 13 5
# 8 2012-08-01 118 29 27 118 57 13 5
# 9 2012-09-01 142 18 45 116 27 13 5
# 10 2012-10-01 74 68 34 182 79 0 5
# 11 2012-11-01 106 48 27 95 74 0 5
# 12 2012-12-01 91 41 20 179 55 0 5
参考表(“ stationID”)
stationIDs <- data.frame(ID = c("360410059", "360410060", "360410209", "361000655", "361000656"),
Names = c("RimView", "IPCO", "WMA.Ditch", "RV.Bypass", "LowerFalls"))
stationIDs # not run
#
# ID Names
# 1 360410059 RimView
# 2 360410060 IPCO
# 3 360410209 WMA.Ditch
# 4 361000655 RV.Bypass
# 5 361000656 LowerFalls
我可以使用单个语句替换“ df_downloaded”中的列名。我在下面显示前三个迭代。
经过三轮迭代后,“ RimValley”,“ IPCO”和“ WMA.Ditch”已替换了它们各自的仪表ID号。
names(df_downloaded) <- gsub(stationIDs$ID[1],stationIDs$Name[1],names(df_downloaded))
# head(df_downloaded)
# Diversion.Date RimView 360410060 360410209 361000655 361000656 Irrigation Seep
# 1 2012-01-01 93 57 28 101 16 0 5
# 2 2012-02-01 102 68 19 124 98 0 5
# 3 2012-03-01 124 93 36 109 56 0 5
# 4 2012-04-01 94 96 23 54 87 13 5
# 5 2012-05-01 83 70 43 119 15 13 5
# 6 2012-06-01 78 63 45 195 15 13 5
names(df_downloaded) <- gsub(stationIDs$ID[2],stationIDs$Name[2],names(df_downloaded))
# head(df_downloaded)
# Diversion.Date RimView IPCO 360410209 361000655 361000656 Irrigation Seep
# 1 2012-01-01 93 57 28 101 16 0 5
# 2 2012-02-01 102 68 19 124 98 0 5
# 3 2012-03-01 124 93 36 109 56 0 5
# 4 2012-04-01 94 96 23 54 87 13 5
# 5 2012-05-01 83 70 43 119 15 13 5
# 6 2012-06-01 78 63 45 195 15 13 5
names(df_downloaded) <- gsub(stationIDs$ID[3],stationIDs$Name[3],names(df_downloaded))
# head(df_downloaded)
# Diversion.Date RimView IPCO WMA.Ditch 361000655 361000656 Irrigation Seep
# 1 2012-01-01 93 57 28 101 16 0 5
# 2 2012-02-01 102 68 19 124 98 0 5
# 3 2012-03-01 124 93 36 109 56 0 5
# 4 2012-04-01 94 96 23 54 87 13 5
# 5 2012-05-01 83 70 43 119 15 13 5
# 6 2012-06-01 78 63 45 195 15 13 5
如果我尝试使用for
循环进行重命名,则会以NA结束列名。
for(i in seq_along(names(df_downloaded))){
names(df_downloaded) <- gsub(stationIDs$ID[i],stationIDs$Name[i],names(df_downloaded))
}
# head(df_downloaded)
# NA NA NA NA NA NA NA NA
# 1 2012-01-01 93 57 28 101 16 0 5
# 2 2012-02-01 102 68 19 124 98 0 5
# 3 2012-03-01 124 93 36 109 56 0 5
# 4 2012-04-01 94 96 23 54 87 13 5
# 5 2012-05-01 83 70 43 119 15 13 5
# 6 2012-06-01 78 63 45 195 15 13 5
我真的希望能够使用for
循环或类似名称来更改名称,因为因为我从中下载数据的站点数量会根据我所分析的年份而变化。
感谢您抽出时间来看我的问题。
答案 0 :(得分:1)
我们可以使用match
#Convert factor columns to character
stationIDs[] <- lapply(stationIDs, as.character)
#Match names of df_downloaded with stationIDs$ID
inds <- match(names(df_downloaded), stationIDs$ID)
#Replace the matched name with corresponding Names from stationIDs
names(df_downloaded)[which(!is.na(inds))] <- stationIDs$Names[inds[!is.na(inds)]]
df_downloaded
# Diversion.Date RimView IPCO WMA.Ditch RV.Bypass LowerFalls Irrigation Seep
#1 2012-01-01 142 14 41 200 79 0 5
#2 2012-02-01 97 100 35 176 22 0 5
#3 2012-03-01 85 59 26 88 71 0 5
#4 2012-04-01 68 49 34 63 15 13 5
#5 2012-05-01 62 58 44 87 16 13 5
#6 2012-06-01 70 59 33 145 87 13 5
#7 2012-07-01 112 65 25 52 64 13 5
#8 2012-08-01 75 12 27 103 19 13 5
#9 2012-09-01 73 65 36 172 68 13 5
#10 2012-10-01 87 35 27 146 42 0 5
#11 2012-11-01 122 17 33 183 32 0 5
#12 2012-12-01 108 65 15 120 99 0 5
答案 1 :(得分:0)
您可以执行dplyr和tidyr。基本上,您希望使数据变长,以便将ID放在一列中,以便您可以使用ID对名称的引用对此进行连接。然后,您可以再次将数据范围扩大。
df_downloaded %>%
gather(ID, value, -Diversion.Date, -Irrigation, -Seep) %>%
left_join(., stationIDs) %>%
dplyr::select(-ID) %>%
spread(Names, value)