所以我在pytorch中定义的神经网络如下(取自https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html)
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 3x3 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 3)
self.conv2 = nn.Conv2d(6, 16, 3)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 6 * 6, 120) # 6*6 from image dimension
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# Max pooling over a (2, 2) window
x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
# If the size is a square you can only specify a single number
x = F.max_pool2d(F.relu(self.conv2(x)), 2)
x = x.view(-1, self.num_flat_features(x))
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
def num_flat_features(self, x):
size = x.size()[1:] # all dimensions except the batch dimension
num_features = 1
for s in size:
num_features *= s
return num_features
假设我要在1 * 32 * 32张量上应用NN,self.fc1
怎么变成16 * 6 *6。我理解16,不确定我们如何得到6。
答案 0 :(得分:0)
首先,您的卷积是没有填充的3x3内核,这意味着数据在通过时会在空间尺寸的每一侧损失1。如果您对原因感到困惑,那么看照片最好:
蓝色是您的输入数据,绿色是结果数据(每个通道一个)。
让我们一步一步看看会发生什么:
Input-> 1x32x32
conv1-> 6x30x30 (lost 2 on each spatial dimension)
max_pool-> 6x15x15 (halves the spatial dimensions)
conv2-> 16x13x13
max_pool-> 16x6x6 (13 doesn't divide evenly)
就在那里!