R:`contrasts <-`(`* tmp *`,value = contr.funs [1 + isOF [nn]])中的错误:在泊松回归下

时间:2019-11-20 15:17:42

标签: r regression glmnet

这是mydata

mydat<- read.csv("C:/Users/admin/desktop/23.csv", sep=";",dec=",")

示例dput()

mydat=structure(list(Tx.Date = structure(c(5L, 1L, 26L, 17L, 24L, 28L, 
6L, 18L, 21L, 4L, 7L, 19L, 10L, 29L, 2L, 8L, 9L, 16L, 22L, 25L, 
14L, 3L, 11L, 20L, 27L, 23L, 13L, 12L, 15L), .Label = c("03.02.2011", 
"05.04.2012", "05.06.2012", "06.02.2012", "08.12.2010", "08.12.2011", 
"09.02.2012", "10.04.2012", "12.04.2012", "13.03.2012", "13.06.2012", 
"13.09.2012", "16.08.2012", "17.05.2012", "18.10.2012", "19.04.2012", 
"19.07.2011", "19.12.2011", "21.02.2012", "22.06.2012", "22.12.2011", 
"24.04.2012", "24.07.2012", "25.07.2011", "26.04.2012", "27.04.2011", 
"27.06.2012", "28.09.2011", "29.03.2012"), class = "factor"), 
    Tx.No = c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L), Tx.Type = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "Elective", class = "factor"), 
    Birth.date.Rec = structure(c(1L, 7L, 9L, 12L, 27L, 11L, 28L, 
    18L, 8L, 20L, 22L, 6L, 5L, 23L, 15L, 4L, 3L, 16L, 10L, 13L, 
    2L, 29L, 14L, 24L, 26L, 25L, 21L, 17L, 19L), .Label = c("01.01.1966", 
    "01.05.1973", "01.06.1966", "01.12.1964", "02.03.1972", "02.09.1987", 
    "03.10.1963", "05.07.1977", "07.05.1987", "07.12.1962", "09.07.1979", 
    "10.04.1950", "10.09.1985", "13.03.1959", "14.07.1960", "16.01.1983", 
    "18.11.1970", "19.01.1984", "21.03.1967", "23.12.1975", "25.01.1968", 
    "26.03.1950", "26.11.1959", "27.05.1950", "27.05.1967", "28.08.1965", 
    "28.09.1954", "28.09.1973", "29.05.1952"), class = "factor"), 
    Age.Rec..ye = c(44L, 47L, 23L, 61L, 56L, 32L, 38L, 27L, 34L, 
    36L, 62L, 24L, 40L, 52L, 51L, 47L, 45L, 29L, 49L, 26L, 39L, 
    60L, 53L, 62L, 46L, 45L, 44L, 41L, 45L), Gender.Rec = structure(c(2L, 
    2L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 
    1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 1L), .Label = c("F", 
    "M"), class = "factor"), Main.Disease = structure(c(6L, 2L, 
    6L, 3L, 6L, 6L, 2L, 4L, 6L, 4L, 2L, 4L, 1L, 4L, 6L, 6L, 4L, 
    6L, 4L, 2L, 6L, 2L, 6L, 3L, 1L, 6L, 2L, 5L, 2L), .Label = c("Autoimmune", 
    "Cholestatic", "Malignancy", "Other", "Unknown", "Viral"), class = "factor"), 
    Specific.Diagn = structure(c(5L, 8L, 6L, 4L, 5L, 3L, 7L, 
    2L, 5L, 2L, 9L, 11L, 1L, 2L, 5L, 5L, 10L, 5L, 11L, 8L, 6L, 
    8L, 5L, 4L, 1L, 5L, 7L, 1L, 8L), .Label = c("", "Alveococcus", 
    "HBV", "HCC-HCV", "HCV", "HDV", "PBC", "PSC", "SBC", "Secondary Biliary Cirrhosis", 
    "Wilson"), class = "factor"), Status.Rec = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Alive", 
    "Death"), class = "factor"), Период.наблюдения.1 = c(98L, 
    50L, 91L, 86L, 69L, 81L, 50L, 34L, 34L, 46L, 75L, 77L, 34L, 
    54L, 90L, 90L, 15L, 73L, 60L, 13L, 89L, 83L, 15L, 40L, 55L, 
    12L, 8L, 80L, 65L), Date.Rec = structure(c(17L, 19L, 4L, 
    14L, 22L, 20L, 15L, 7L, 7L, 9L, 3L, 23L, 2L, 18L, 25L, 25L, 
    12L, 10L, 13L, 6L, 25L, 16L, 21L, 24L, 1L, 26L, 5L, 8L, 11L
    ), .Label = c("01.02.2017", "02.02.2015", "05.06.2018", "05.12.2018", 
    "07.05.2013", "07.06.2013", "13.11.2014", "14.05.2019", "14.12.2015", 
    "15.06.2018", "16.04.2018", "16.07.2013", "19.05.2017", "19.09.2018", 
    "20.02.2016", "21.05.2019", "22.02.2019", "22.10.2016", "23.04.2015", 
    "24.07.2018", "25.09.2013", "26.04.2017", "26.07.2018", "28.10.2015", 
    "30.10.2019", "31.07.2013"), class = "factor"), Death.Cause.Rec = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Status.Graft = structure(c(1L, 
    2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("Func", 
    "Loss"), class = "factor"), Период.наблюдения.2 = c(98L, 
    50L, 91L, 86L, 69L, 81L, 50L, 34L, 34L, 46L, 75L, 77L, 34L, 
    54L, 90L, 90L, 15L, 73L, 60L, 13L, 89L, 83L, 15L, 40L, 55L, 
    12L, 8L, 80L, 65L), Date.Graft = structure(c(17L, 19L, 4L, 
    14L, 22L, 20L, 15L, 7L, 7L, 9L, 3L, 23L, 2L, 18L, 25L, 25L, 
    12L, 10L, 13L, 6L, 25L, 16L, 21L, 24L, 1L, 26L, 5L, 8L, 11L
    ), .Label = c("01.02.2017", "02.02.2015", "05.06.2018", "05.12.2018", 
    "07.05.2013", "07.06.2013", "13.11.2014", "14.05.2019", "14.12.2015", 
    "15.06.2018", "16.04.2018", "16.07.2013", "19.05.2017", "19.09.2018", 
    "20.02.2016", "21.05.2019", "22.02.2019", "22.10.2016", "23.04.2015", 
    "24.07.2018", "25.09.2013", "26.04.2017", "26.07.2018", "28.10.2015", 
    "30.10.2019", "31.07.2013"), class = "factor"), Cause.of.Graft.Loss = structure(c(1L, 
    2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("", 
    "Recc"), class = "factor"), X4..REC.PREOP..Day..1.or.0. = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), ABO.Rec = structure(c(2L, 
    4L, 4L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 2L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 1L, 4L, 2L), .Label = c("", 
    "A(II)", "AB(IV)", "O(I)"), class = "factor"), Height.Rec..cm = c(174L, 
    186L, 153L, 160L, 161L, 174L, 160L, 167L, 183L, 165L, NA, 
    172L, 160L, 158L, 177L, 164L, 152L, 164L, 156L, 163L, 172L, 
    166L, NA, NA, 166L, NA, 158L, 180L, 160L), Weight.Rec..kg = c(80L, 
    64L, 35L, 72L, 57L, 85L, 50L, 70L, 93L, 45L, NA, 62L, 50L, 
    72L, 64L, 83L, 59L, 73L, 56L, 53L, 81L, 84L, NA, NA, 54L, 
    NA, 63L, 78L, 53L), BMI.Rec = structure(c(12L, 5L, 3L, 14L, 
    8L, 1L, 6L, 11L, 14L, 4L, 1L, 7L, 6L, 15L, 6L, 17L, 12L, 
    13L, 9L, 6L, 13L, 16L, 2L, 2L, 6L, 2L, 11L, 10L, 7L), .Label = c("", 
    "#ДЕЛ/0!", "15", "17", "18", "20", "21", "22", "23", "24", 
    "25", "26", "27", "28", "29", "30", "31"), class = "factor"), 
    Alb.Rec.0 = c(40.1, NA, 35, 32, 31, 24, 30, 41, 26, 38, 36, 
    44, 28, 42, NA, NA, 37, NA, 45, 33, NA, 34, NA, 26, 35, 31, 
    43, 33, NA), Bil.Rec.0 = c(11.2, NA, 87, 31, 50, 65, 96, 
    23, 39, 45, 28, 22, 61, 8, NA, NA, 34, NA, 14, 317, NA, 13, 
    NA, 46, 19, 67, 444, 124, NA), INR.Rec.0 = c(1.21, NA, 2.3, 
    1.7, 1.4, 1.7, 1, 1.5, 1.3, 1.3, 0.9, 1.3, 1.3, 1.2, NA, 
    NA, 1.2, NA, 1.2, 1.5, NA, 1.5, NA, 1.3, 1.6, 1.5, 2.9, 1.9, 
    NA), Na.Rec.0 = c(140.8, NA, 130, 139, 132, 137, 137, NA, 
    139, 139, 138, 138, 136, NA, NA, NA, 137, NA, 141, 135, NA, 
    137, NA, 129, 133, 135, 136, 140, NA), Crea.Rec.0 = c(72.9, 
    NA, 50, 64, 68, 60, 54, 47, 80, 59, 65, 87, 100, 80, NA, 
    NA, 72, NA, 72, 54, NA, 88, NA, 96, 134, 54, 52, 88, NA), 
    RRT.Preop = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA), MELD.Score = c(9L, NA, 22L, 14L, 13L, NA, 13L, 
    12L, 12L, 13L, NA, 10L, 16L, 8L, NA, NA, 11L, NA, 8L, 22L, 
    NA, 11L, NA, 14L, 16L, 16L, 31L, 21L, NA), MELD.Na = c(8L, 
    NA, 26L, 15L, 18L, NA, 15L, NA, 13L, 14L, NA, 12L, 18L, NA, 
    NA, NA, 13L, NA, 7L, 24L, NA, 13L, NA, 21L, 20L, 19L, 32L, 
    21L, NA), X5..DONOR = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA), Graft.Volume..ml = c(NA, NA, NA, NA, 
    NA, NA, NA, 830L, 1000L, NA, 830L, 695L, 770L, 1174L, 680L, 
    NA, 820L, 1000L, 880L, 870L, 750L, 733L, 883L, 1000L, 600L, 
    900L, 820L, 980L, 950L), Age.Don.ye = c(32L, 25L, 45L, 28L, 
    35L, 35L, 32L, 19L, 37L, 28L, 42L, 46L, 24L, 27L, 18L, 44L, 
    24L, 52L, 23L, 50L, 39L, 24L, 31L, 34L, 25L, 20L, 46L, 41L, 
    27L), Gender.Don = structure(c(2L, 2L, 1L, 1L, 1L, 2L, 2L, 
    1L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 
    2L, 2L, 1L, 2L, 1L, 2L, 1L), .Label = c("F", "M"), class = "factor"), 
    AST.Don = c(16.1, NA, 15, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 26, NA, 
    32, NA, NA), ALT.Don = c(12.6, NA, 18, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, 28, NA, 28, NA, NA), Bil.Don = c(11.1, NA, 9, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, 4, NA, 12, NA, NA), Na.Don = c(NA, NA, 140L, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, 138L, NA, 138L, NA, NA), Crea.Don = c(81L, 
    NA, 76L, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, 74L, NA, 59L, NA, NA), 
    Donor.Comments = c(NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA), X7..DAY.1..24h. = c(NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA), AST.Rec.1 = c(206.4, 
    NA, NA, 278, 235, 1758, 518, 278, 459, 230, 439, 115, 110, 
    313, 151, 292, 445, 285, 273, 268, 328, 259, 140, 346, 205, 
    207, 225, 278, 131), ALT.Rec.1 = c(185.4, NA, NA, 145, 262, 
    230, 733, 302, 670, 244, 707, 136, 155, 452, 224, 379, 528, 
    571, 321, 311, 377, 458, 129, 425, 172, 165, 138, 330, 120
    ), Alb.Rec.1 = c(35.7, NA, NA, 33, 32, 31, 37, 38, 30, 37, 
    40, 40, 36, 43, 30, 33, 35, 31, NA, 35, 25, 38, 32, 33, 38, 
    35, 40, 29, 38), Bil.Rec.1 = c(39L, NA, NA, 41L, 64L, 42L, 
    42L, 41L, 64L, 40L, 38L, 13L, 29L, 32L, 27L, 64L, 127L, 27L, 
    16L, 250L, 39L, 26L, 65L, 35L, 136L, 52L, 202L, 58L, 25L), 
    Crea.Rec.1 = c(86L, NA, NA, 60L, 74L, 83L, 28L, 30L, 64L, 
    60L, 73L, 60L, 101L, 73L, 92L, 95L, 28L, 42L, 66L, 84L, 140L, 
    144L, 92L, 106L, 95L, 74L, 37L, 51L, 54L), INR.Rec.1 = c(1.3, 
    NA, NA, 1.5, 1.4, 1.4, 1.1, 1.4, 1.9, 2, 1.6, 1.4, 1.3, 1.4, 
    NA, 1.7, 1.5, 1.6, 1.4, 1.9, NA, 1.7, 1.3, 1.5, 1.6, 1.5, 
    2, 1.4, 1.6), Na.Rec.1 = c(147L, NA, NA, 145L, 145L, 129L, 
    139L, 140L, 141L, 151L, 141L, 133L, 151L, 140L, 141L, 147L, 
    141L, 143L, 140L, 142L, 132L, 131L, 145L, 139L, 149L, 140L, 
    145L, 137L, 136L), MELD.POD1 = structure(c(6L, 2L, 2L, 7L, 
    8L, 1L, 4L, 7L, 10L, 9L, 1L, 3L, 4L, 5L, 2L, 9L, 10L, 7L, 
    3L, 12L, 2L, 7L, 7L, 7L, 11L, 8L, 12L, 8L, 6L), .Label = c("", 
    "#ЧИСЛО!", "23", "24", "25", "26", "27", "28", "31", "32", 
    "33", "37"), class = "factor"), MLV = structure(c(2L, 1L, 
    1L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 2L, 3L, 2L, 1L, 2L, 2L, 
    2L, 2L, 2L, 1L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("", 
    "No", "Yes"), class = "factor"), AST.ALT.Rec.max.1.7 = c(216L, 
    NA, 145L, 278L, 262L, 421L, 732L, 304L, 741L, 363L, 781L, 
    209L, 158L, 459L, NA, NA, 553L, NA, 321L, 284L, NA, 538L, 
    NA, 494L, NA, 214L, 225L, 330L, 131L), Bil.Rec.7 = c(50.9, 
    NA, 45, 19.8, 18.8, 85, 35, 55, 32, 97, 46, 26, 29.4, 14.2, 
    NA, NA, 91, NA, 27, 164, NA, 32, NA, 21, NA, 89, 184, 38, 
    35), INR.Rec.7 = c(1.3, NA, 1.2, 1.2, 1.1, 1.1, 1.1, 1.1, 
    1.5, 1.6, 1.2, 1.3, 1, 1.1, NA, NA, 1.3, NA, 1.2, 1.7, NA, 
    1.3, NA, 1.2, NA, 1.5, 2.3, 1.2, NA), Intial.Graft.Function = structure(c(1L, 
    1L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 1L, 1L, 
    3L, 1L, 3L, 2L, 1L, 3L, 1L, 3L, 1L, 3L, 2L, 3L, 1L), .Label = c("", 
    "EAD", "Good"), class = "factor"), Initial.Function.Comments = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), X14..BILIARY = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Code = structure(c(6L, 
    2L, 4L, 2L, 8L, 8L, 2L, 4L, 12L, 11L, 4L, 1L, 13L, 7L, 10L, 
    1L, 2L, 5L, 5L, 2L, 5L, 3L, 1L, 1L, 1L, 4L, 5L, 1L, 9L), .Label = c("1 D-D", 
    "1 D-J", "2 (DD)-D", "2 (DD)-J", "2 cDD-D", "2 D-Cys, D-D", 
    "2 D-J, D-J ", "3 (DDD)-J", "3 c(DD)D-J ", "3 D-D, (DD)-J  ", 
    "3 D-J, D-J, D-J", "4 (DDDD)-J ", "4 D-J, D-J, D-J, D-J"), class = "factor"), 
    Graft.Ducts.No = c(2L, 1L, 2L, 1L, 3L, 3L, 1L, 2L, 4L, 3L, 
    2L, 1L, 4L, 2L, 3L, 1L, 1L, 2L, 2L, 1L, 2L, 2L, 1L, 1L, 1L, 
    2L, 2L, 1L, 3L), Biliary.Anast.No = c(2L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 3L, 1L, 1L, 4L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), Tube = structure(c(1L, 
    1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 2L, 2L, 1L, 
    2L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L), .Label = c("No", 
    "Yes"), class = "factor"), Drain.to. = structure(c(2L, 3L, 
    3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 2L, 3L, 3L, 1L, 2L, 3L, 
    2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 2L, 3L), .Label = c("Combined", 
    "Duct", "Jejunum"), class = "factor"), Ducts.conjunct = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L), .Label = c("No", 
    "Yes"), class = "factor"), High.Rank.Ducts = structure(c(2L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("No", 
    "Yes"), class = "factor"), End.to.Side...1 = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "No", class = "factor"), 
    Leak = structure(c(1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 1L, 
    1L, 2L, 1L, 1L), .Label = c("No", "Yes"), class = "factor"), 
    Leak.Type.ISGLS = structure(c(1L, 1L, 2L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 
    2L, 1L, 1L, 1L, 2L, 1L, 1L), .Label = c("", "B"), class = "factor"), 
    Leak.Site = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 2L, 2L, 1L, 
    1L, 1L, 1L, 1L, 1L), .Label = c("", "Unknown site"), class = "factor"), 
    Biliary.Anast.Stricture = structure(c(1L, 1L, 2L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L), .Label = c("No", "Yes"
    ), class = "factor"), Date.Stricture = structure(c(1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 2L, 1L, 1L), .Label = c("", 
    "02.04.2013", "13.07.2012"), class = "factor"), Stricture.Treatment = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Tech.Treatment.Success = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L), .Label = c("", 
    "Yes"), class = "factor"), Open.Reconstr = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 2L, 1L, 1L), .Label = c("", 
    "No"), class = "factor"), Arterial.compl. = c(0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 
    0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L), X10..IMMUNOLOGY...IS..Day.0...1mo...Last.FU. = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), HLA.MM = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Induction = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Steroids.IV.Total..mg = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), CNI.1mo = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L), .Label = c("", 
    "Tac"), class = "factor"), Antimetab.1mo = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L), .Label = c("", 
    "No"), class = "factor"), mTOR.1mo = structure(c(1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L), .Label = c("", 
    "No"), class = "factor"), Steroids.1mo = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L), .Label = c("", 
    "Yes"), class = "factor"), X.CNI..1mo = c(NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, 6.6, NA, NA), X.mTOR..1mo = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Last.FU.Date = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L), .Label = c("", 
    "24.09.2012"), class = "factor"), CNI.Last.FU = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L), .Label = c("", 
    "Tac"), class = "factor"), Antimetab.Last.FU = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L), .Label = c("", 
    "No"), class = "factor"), mTOR.Last.FU = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L), .Label = c("", 
    "No"), class = "factor"), Steroids.Last.FU = structure(c(1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 1L, 1L), .Label = c("", 
    "Yes"), class = "factor"), X.CNI..Last.FU = c(NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, 6.6, NA, NA), X.mTOR..Last.FU = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), Immunology.Comments = c(NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 
    NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA)), row.names = c(NA, 
-29L), class = "data.frame")

让我描述文件中的关键变量:

(Tx Date) - date of transplantation;
 (Status Rec) - the status of the recipient Dead / Alive at the time of the date (Column Date Rec);

(Status Graft) - status of the Func / Loss transplant at the time of the date (Column  Date Graft);

And the key binary outcome is the Biliary.Anast.Stricture 

是/否(是否发生并发症)。如果发生了,那么事件的什么日期(在Date Stricture列中)Biliary.Anast.Stricture是Y,即因变量。  一切都是不同的预测因素

output <-glm(formula = Biliary.Anast.Stricture ~ ., data = mydat,
             family = poisson)
print(summary(output))

和错误

Error in `contrasts <-` (` * tmp * `, value = contr.funs [1 + isOF [nn]]):
   contrasts can only be applied to factors with two or more levels

我使用Poisson回归原因从Poisson回归的描述中,可以说是考虑到观察患者的时间不同:一个人在8个月后失踪,没有关于他的数据,有人研究了并发症发生在第10个月。有人在第19个月,有人在观察了13个月,没有并发症..等。

如何正确无误?

0 个答案:

没有答案