PyTorch LSTMCell教师强制

时间:2019-11-20 03:17:32

标签: pytorch lstm

我对PyTorch还是很陌生,我正在尝试使用带有教师强制的LSTMCell设计一个18节点的LSTM。我有很多困难。

这是我的模特:

class tryLSTM(nn.moduleList):
    def __init__(self, input_size, hidden_size, batch_size):
        super(tryLSTM, self).__init__()

       self.input_size = input_size
       self.hidden_size = hidden_size
       self.batch_size = batch_size

       self.lstm0 = nn.LSTMCell(input_size, hidden_size, bias=True)
       self.lstm1 = nn.LSTMCell(input_size, hidden_size, bias=True)
       self.lstm2 = nn.LSTMCell(input_size, hidden_size, bias=True) 
       .........
       self.lstm17 = nn.LSTMCell(input_size, hidden_size, bias=True)
   def init_hidden(self):
       # initialize the hidden state and the cell state to zeros
       hidden = torch.zeros(self.batch_size, self.hidden_size)
       cell = torch.zeros(self.batch_size, self.hidden_size)
           return hidden, cell
   def forward(self, x, hc):
       out = []
       h_0, c_0 = hc

       h_1, c_1 = self.lstm1(x[0], h_0, c_0)
       out[0] = h_1

       h_2, c_2 = self.lstm2(x[1], h_1, c_1)
       out[1] = h_2
       ......
       h_17, c_17 = self.lstm17(x[16], h_16, c_16)
       out[16] = h_17

model = tryLSTM(input_size=128, hidden_size=128, batch_size=18)

if gpu: model.cuda()

optimizer = optim.Adam(model.parameters(), lr=0.0001)

criterion = nn.BCELoss(weight=None, reduction='mean')

这是训练循环:

def train(epoch):
model.train()
# initialize hidden and cell state
hc = model.init_hidden()
for batch_idx, (data, target) in enumerate(train_loader):
    # Zero out the gradients
    optimizer.zero_grad()
    target = data[1:]
    print(target.size())
    # Put data on GPU
    if gpu:
        data = data.cuda()
        target = target.cuda()
    # Get outputs of LSTM
    output = model(data, hc)
    print(output.size)
    # Calculate loss
    loss = criterion(output, target)
    # Calculate gradients
    loss.backward()
    # Update model parameters
    optimizer.step()
    train_loss.append(loss.item())

第一季度,我收到以下错误消息:

  

TypeError:forward()需要2到3个位置参数,但给出了4个

请帮助,谢谢!

0 个答案:

没有答案