我对PyTorch还是很陌生,我正在尝试使用带有教师强制的LSTMCell设计一个18节点的LSTM。我有很多困难。
这是我的模特:
class tryLSTM(nn.moduleList):
def __init__(self, input_size, hidden_size, batch_size):
super(tryLSTM, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.batch_size = batch_size
self.lstm0 = nn.LSTMCell(input_size, hidden_size, bias=True)
self.lstm1 = nn.LSTMCell(input_size, hidden_size, bias=True)
self.lstm2 = nn.LSTMCell(input_size, hidden_size, bias=True)
.........
self.lstm17 = nn.LSTMCell(input_size, hidden_size, bias=True)
def init_hidden(self):
# initialize the hidden state and the cell state to zeros
hidden = torch.zeros(self.batch_size, self.hidden_size)
cell = torch.zeros(self.batch_size, self.hidden_size)
return hidden, cell
def forward(self, x, hc):
out = []
h_0, c_0 = hc
h_1, c_1 = self.lstm1(x[0], h_0, c_0)
out[0] = h_1
h_2, c_2 = self.lstm2(x[1], h_1, c_1)
out[1] = h_2
......
h_17, c_17 = self.lstm17(x[16], h_16, c_16)
out[16] = h_17
model = tryLSTM(input_size=128, hidden_size=128, batch_size=18)
if gpu: model.cuda()
optimizer = optim.Adam(model.parameters(), lr=0.0001)
criterion = nn.BCELoss(weight=None, reduction='mean')
这是训练循环:
def train(epoch):
model.train()
# initialize hidden and cell state
hc = model.init_hidden()
for batch_idx, (data, target) in enumerate(train_loader):
# Zero out the gradients
optimizer.zero_grad()
target = data[1:]
print(target.size())
# Put data on GPU
if gpu:
data = data.cuda()
target = target.cuda()
# Get outputs of LSTM
output = model(data, hc)
print(output.size)
# Calculate loss
loss = criterion(output, target)
# Calculate gradients
loss.backward()
# Update model parameters
optimizer.step()
train_loss.append(loss.item())
第一季度,我收到以下错误消息:
TypeError:forward()需要2到3个位置参数,但给出了4个
请帮助,谢谢!