我定义了一个对数似然函数,并且我在一个均匀分布上采样了一个变量。我确保对数似然函数对相同的输入返回相同的结果。但是,当我采样时,每次分布都有些不同(在相同范围内)。
这是怎么回事?
import pymc3 as mc
import theano.tensor as tt
SAMPLES = 1000
TUNING_SAMPLES = 100
N_CORES = 10
N_CHAINS = 2
#(logl_ThetaFromChoices is defined above with the input)
# use PyMC3 to sampler from log-likelihood
with mc.Model() as modelFindTheta:
theta = mc.Uniform('theta', lower=-200.0, upper=200.0)
# convert m and c to a tensor vector
theta = tt.as_tensor_variable(theta)
def callOp(v):
return logl_ThetaFromChoices(v)
mc.DensityDist('logl_ThetaFromChoices', callOp, observed={'v': theta})
step1 = mc.Metropolis()
trace_theta = mc.sample(SAMPLES,
tune=TUNING_SAMPLES,
discard_tuned_samples=True,
chains=N_CHAINS,
cores=N_CORES,
step=step1)
答案 0 :(得分:2)
由于涉及随机数生成,因此需要设置种子以获得可重复的结果。对于PyMC3,这是通过the pymc3.sampling.sample() method中的random_seed
参数完成的。