我检查了pytest文档,但找不到任何相关内容。我知道pytest --durations = 0会打印出所有测试的运行时。有没有办法让pytest也打印出函数消耗的峰值内存使用情况?否则,我可能只能使用下面的装饰功能。但我想知道是否有更好的方法可以做到这一点。
from functools import wraps
def mem_time(func):
@wraps(func)
def wrapper(*args, **kwargs):
# Start of function
r0 = resource.getrusage(resource.RUSAGE_SELF)
t0 = datetime.datetime.now()
# Call function
status = func(*args, **kwargs)
# End of function
r1 = resource.getrusage(resource.RUSAGE_SELF)
t1 = datetime.datetime.now()
sys.stderr.write('{}: utime {} stime {} wall {}\n'.format(func.__name__,
datetime.timedelta(seconds=r1.ru_utime - r0.ru_utime),
datetime.timedelta(seconds=r1.ru_stime - r0.ru_stime),
t1 - t0))
sys.stderr.write('{}: mem {} MB ({} GB)\n'.format(func.__name__,
(r1.ru_maxrss - r0.ru_maxrss) / 1000.0,
(r1.ru_maxrss - r0.ru_maxrss) / 1000000.0))
return status
return wrapper
答案 0 :(得分:3)
pytest-monitor 一个新的pytest出色插件,有助于监视资源使用情况,时间安排,内存等。所有指标都存储在sqlite数据库中以进行后期分析
从pypi或conda-forge中检出 pytest-monitor :
示例
Calculated Table =
CALCULATETABLE (
SUMMARIZE (
'SOME_TABLE',
[CATEGORY],
"COUNT", DISTINCTCOUNT ( 'SOME_TABLE'[SOME_COLUMN] )
),
Dim[Color]
= SELECTEDVALUE ( Slicer[SlicerValues] )
)
希望这会有所帮助
答案 1 :(得分:0)
内存性能分析:
没有插件可以从pytest获取内存配置文件(据我所知)。 使用以下链接进行内存分析
https://github.com/fabianp/memory_profiler
其他参考:https://stackoverflow.com/a/43772305/9595032
累计时间:
https://pypi.org/project/pytest-profiling/
但是要获取使用插件pytest-profiling
的所有调用的累积时间
pip install pytest-profiling
用法:
pytest -s -v [file_name] --profile
输出看起来像这样
Profiling (from /home/work/project/analytics/testing/TestCases/cloud/prof/combined.prof):
Wed Nov 20 12:09:47 2019 /home/work/project/analytics/testing/TestCases/cloud/prof/combined.prof
437977 function calls (380211 primitive calls) in 3.866 seconds
Ordered by: cumulative time
List reduced from 683 to 20 due to restriction <20>
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 3.866 3.866 runner.py:107(pytest_runtest_call)
1 0.000 0.000 3.866 3.866 python.py:1457(runtest)
1 0.000 0.000 3.866 3.866 hooks.py:275(__call__)
1 0.000 0.000 3.866 3.866 manager.py:59(<lambda>)
1 0.000 0.000 3.866 3.866 manager.py:65(_hookexec)
1 0.000 0.000 3.866 3.866 callers.py:157(_multicall)
1 0.000 0.000 3.866 3.866 python.py:188(pytest_pyfunc_call)
1 0.001 0.001 3.866 3.866 test_abc.py:46(test_abc)
1 0.000 0.000 3.865 3.865 test_abc.py:9(run_abc_test)
1 0.001 0.001 3.854 3.854 dataAnalyzer.py:826(sanitize_data)
1 0.000 0.000 3.773 3.773 Analyzer.py:563(Traffic)
1 0.000 0.000 3.772 3.772 traffic.py:83(false_alarm_checks)
3 0.000 0.000 3.767 1.256 api.py:60(get)
3 0.000 0.000 3.765 1.255 api.py:135(_get_from_overpass)
3 0.000 0.000 3.765 1.255 api.py:101(post)
3 0.000 0.000 3.765 1.255 api.py:16(request)
3 0.000 0.000 3.762 1.254 sessions.py:445(request)
3 0.000 0.000 3.759 1.253 sessions.py:593(send)
3 0.000 0.000 3.757 1.252 adapters.py:393(send)
3 0.000 0.000 3.755 1.252 connectionpool.py:447(urlopen)