我正在TensorFlow 1.15中使用Keras的Functional API。我的模型很复杂,并且具有嵌套的结构,因此我认为tf.name_scope
可能允许我创建一个不错的模块化结构,每个块都有自己的唯一前缀添加到该块的层中。但是,我似乎无法正常工作。这是一个示例:
#!/usr/bin/env python
import tensorflow as tf
from tensorflow.keras import Input, Model
from tensorflow.keras.layers import Dense
if __name__ == '__main__':
inputs = Input((10,))
with tf.name_scope('block_1'):
x = Dense(32)(inputs)
x = Dense(32)(x)
with tf.name_scope('block_2'):
x = Dense(32)(x)
outputs = Dense(32)(x)
model = Model(inputs=inputs, outputs=outputs)
print("\nLayer Names:")
for layer in model.layers:
print(layer.name)
print("\nModel Summary:")
print(model.summary())
print("\nOutputs:", outputs.name)
我得到的输出是:
Layer Names:
input_1
dense
dense_1
dense_2
dense_3
Model Summary:
Model: "model"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
input_1 (InputLayer) [(None, 10)] 0
_________________________________________________________________
dense (Dense) (None, 32) 352
_________________________________________________________________
dense_1 (Dense) (None, 32) 1056
_________________________________________________________________
dense_2 (Dense) (None, 32) 1056
_________________________________________________________________
dense_3 (Dense) (None, 32) 1056
=================================================================
Total params: 3,520
Trainable params: 3,520
Non-trainable params: 0
_________________________________________________________________
None
Outputs: block_2/dense_3/BiasAdd:0
如您所见,在最后一行中,如果我仅打印输出图层的名称,它似乎采用了name_scope
前缀,但是如果我尝试从从模型中检索到的内容打印图层名称,它不起作用。我希望图层名称看起来像
input_1
block_1/dense
block_1/dense_1
block_2/dense_2
block_2/dense_3
或者类似的东西。关于如何实现此目标的任何想法,或者我应该知道有什么其他机制比tf.name_scope
更适合于此吗?
答案 0 :(得分:0)
tf.name_scope
将张量名称放入名称范围。如果在各处打印x.name
,则将看到正确应用了示波器名称,因为x
是张量。另一方面,Keras层不是张量,因此它们不尊重名称范围(可以吗?可以。为什么不呢?我不知道)。
您可以为Keras图层明确命名,例如Dense(32, name='scope_1/layer_1
。我不知道其他选择。
答案 1 :(得分:0)
def vgg_block(layer_in, n_filters, n_conv, i):
for j in range(n_conv):
layer_in=Conv2D(n_filters, (3,3), padding='same', activation='relu', name=f"block{i}_conv{i+j}")(layer_in)
layer_in = MaxPooling2D((2,2), strides=(2,2), name=f"block{i}_pool")(layer_in)
return layer_in
# define model input
visible = Input(shape=(256, 256, 3))
# add vgg module
layer = vgg_block(visible, 64, 2, 1)
# add vgg module
layer = vgg_block(layer, 128, 2, 2)
# add vgg module
layer = vgg_block(layer, 256, 4, 3)
# create model
model = Model(inputs=visible, outputs=layer)
# summarize model
model.summary()
# plot model architecture
plot_model(model, to_file='1-multiple_vgg_blocks.png', show_shapes=True, show_layer_names=True, show_dtype=True)