我试图通过在Tensorflow.js中使用knnClassifier和mobileNet图像识别模型来应用转移学习,但是,我收到以下错误:
尺寸(28672)必须与形状28,3072的乘积匹配
我不知道该如何解决这个问题,我尝试创建tensor3D,使用双线性和最近邻居调整大小,但无济于事。我想知道这里是否有人可以检查一下。
请注意,我的想法是训练来自某些文件夹的图像,并使用knnClassifier的添加示例将其分配给其类。我有一个从路径读取图像的函数,以及一个用于训练模型并根据图像做出预测的异步函数。
............................................... .................................................. < / p>
const tf = require('@tensorflow/tfjs');
//MobileNet : pre-trained model for TensorFlow.js
const mobilenet = require('@tensorflow-models/mobilenet');
//The module provides native TensorFlow execution
//in backend JavaScript applications under the Node.js runtime.
const tfnode = require('@tensorflow/tfjs-node');
const knnClassifier = require('./node_modules/@tensorflow-models/knn-classifier/dist/knn-classifier');
var glob = require('glob')
//The fs module provides an API for interacting with the file system.
const fs = require('fs');
const readImage = path => {
//reads the entire contents of a file.
//readFileSync() is synchronous and blocks execution until finished.
const imageBuffer = fs.readFileSync(path);
//Given the encoded bytes of an image,
//it returns a 3D or 4D tensor of the decoded image. Supports BMP, GIF, JPEG and PNG formats.
var tfimage = tfnode.node.decodeImage(imageBuffer);
// const t3d = tf.tensor3d(Array.from(tfimage.dataSync()),[tfimage.shape[0], tfimage.shape[1], 1])
const smalImg = tf.image.resizeNearestNeighbor(tfimage, [32, 32]);
const resized = tf.cast(smalImg, 'float32');
// t3d.reshape([32,32,3])
// var smalImg = tf.image.resizeBilinear(tfimage, [368, 432]);
// const resized = tf.cast(smalImg, 'float32');
return resized;
}
var mainDirectory = "./img_samples/";
const imageClassification = async path => {
const classifier = await knnClassifier.create();
const image = await readImage(path);
// Load the model.
const model = await mobilenet.load();
// Classify the image.
const predictions = await model.classify(image);
// print results on terminal
console.log('Classification Results:', predictions);
var folders = fs.readdirSync(mainDirectory);
var filesPerClass = [];
for(var i=0;i<folders.length;i++){
files = fs.readdirSync(mainDirectory+folders[i]);
var files_complete = [];
for(var j=0;j<files.length;j++){
files_complete.push(mainDirectory+folders[i]+"/"+files[j]);
}
filesPerClass.push(files_complete);
}
for(var i=0;i<filesPerClass.length;i++){
for(var j=0;j<filesPerClass[i].length;j++){
imageSample = readImage(filesPerClass[i][j]);
console.log(imageSample);
activation = await model.infer(imageSample, 'conv_preds'); //main directory
classifier.addExample(activation,i);
}
}
console.log(readImage('./hospitalTest.jpg'))
const predictionsTest = await classifier.predictClass(readImage('./hospitalTest.jpg'));
console.log('classficationTest:',predictionsTest);
}
if (process.argv.length !== 3) throw new Error('Incorrect arguments: node classify.js <IMAGE_FILE>');
imageClassification(process.argv[2]);
答案 0 :(得分:0)
由于使用移动网络节点的输出来训练knn分类器,因此预测也需要同样进行
outputMobilenet = await model.infer(readImage('./hospitalTest.jpg'), 'conv_preds')
predicted = await classifier.predictClass(outputMobilenet)