我拥有的是一个名为“报告”的数据集,其中包含交付驱动程序的详细信息。 “通过”表示他们按时交货,而“失败”表示他们没有按时交货
Name|Outcome
A |Pass
B |Fail
C |Pass
D |Pass
A |Fail
C |Pass
我想要的
Name|Pass|Fail|Total
A |1 |1 |2
B |0 |1 |1
C |2 |0 |2
D |1 |0 |1
我尝试过:
report.groupby(['Name','outcome']).agg(['count'])
但是它没有给我所需的输出
非常感谢
答案 0 :(得分:6)
将here与margins=True
和margins_name
参数一起使用:
print (pd.crosstab(df['Name'], df['Outcome'], margins=True, margins_name='Total'))
Outcome Fail Pass Total
Name
A 1 1 2
B 1 0 1
C 0 2 2
D 0 1 1
Total 2 4 6
然后删除位置为crosstab
的最后一行:
df = pd.crosstab(df['Name'], df['Outcome'], margins=True, margins_name='Total').iloc[:-1]
print (df)
Outcome Fail Pass Total
Name
A 1 1 2
B 1 0 1
C 0 2 2
D 0 1 1
答案 1 :(得分:5)
这是pd.crosstab
,sum
超过axis=1
:
df = pd.crosstab(df['Name'], df['Outcome'])
df['Total'] = df[['Fail', 'Pass']].sum(axis=1)
Outcome Fail Pass Total
Name
A 1 1 2
B 1 0 1
C 0 2 2
D 0 1 1
或者要删除列轴名称,我们使用rename_axis
:
df = pd.crosstab(df['Name'], df['Outcome']).reset_index().rename_axis(None, axis='columns')
df['Total'] = df[['Fail', 'Pass']].sum(axis=1)
Name Fail Pass Total
0 A 1 1 2
1 B 1 0 1
2 C 0 2 2
3 D 0 1 1
答案 2 :(得分:1)
In [1]: from io import StringIO
In [2]: df_string = '''Name|Outcome^M
...: A |Pass^M
...: B |Fail^M
...: C |Pass^M
...: D |Pass^M
...: A |Fail^M
...: C |Pass'''
In [3]: report = pd.read_csv(StringIO(df_string), sep='|')
In [4]: report.assign(count=1).groupby(["Name", "Outcome"])["count"].sum().unstack().assign(Total=lambda df: df.sum(axis=1))
Out[4]:
Outcome Fail Pass Total
Name
A 1.0 1.0 2.0
B 1.0 NaN 1.0
C NaN 2.0 2.0
D NaN 1.0 1.0
现在您可以使用fillna(0)
方法填充NAs值
答案 3 :(得分:0)
使用RDD[SparseVector]
和pandas.dummies
的一种方法:
groupby
输出:
report = pd.get_dummies(df1, columns=['outcome']).groupby(['name'], as_index=False).sum().rename(columns={"outcome_Fail":"Fail", "outcome_Pass":"Pass"})
report["Total"] = report["Pass"] + report["Fail"]
print(report)