根据时间列合并两个数据帧

时间:2019-11-17 01:06:25

标签: python pandas

注意:我先前在here处问过一个关于相同数据的类似问题,但是现在我试图以不同的方式合并数据框。

我有两个数据框,用于存储不同类型的患者医疗信息。这两个数据帧的共同元素是遭遇ID(hadm_id),信息记录的时间((n|c)e_charttime)。

一个数据帧(ds)包含结构化信息,另一个数据帧(dn)包含一列,该列带有在指定时间记录的临床记录以进行相遇。这两个数据帧都包含多个遭遇,但是共同的元素是遭遇ID(hadm_id)。

以下是数据帧的示例:

ds
    hadm_id ce_charttime    hr  sbp dbp
0   140694  2121-08-12 19:00:00 67.0    102.0   75.0
1   140694  2121-08-12 19:45:00 68.0    135.0   68.0
2   140694  2121-08-12 20:00:00 70.0    153.0   94.0
3   171544  2153-09-06 14:11:00 80.0    114.0   50.0
4   171544  2153-09-06 17:30:00 80.0    114.0   50.0
5   171544  2153-09-06 17:35:00 80.0    114.0   50.0
6   171544  2153-09-06 17:40:00 76.0    115.0   51.0
7   171544  2153-09-06 17:45:00 79.0    117.0   53.0
dn
    hadm_id ne_charttime    note
0   140694  2121-08-10 20:32:00 some text1
1   140694  2121-08-11 12:57:00 some text2
2   140694  2121-08-11 15:18:00 some text3
3   171544  2153-09-05 15:09:00 some text4
4   171544  2153-09-05 17:43:00 some text5
5   171544  2153-09-06 10:36:00 some text6
6   171544  2153-09-06 15:55:00 some text7
7   171544  2153-09-06 17:12:00 some text8

实际数据包括近10,000次遭遇,超过25万行结构化数据和50,000行临床记录。

我想根据信息绘制的时间对其进行合并。例如,如果您从两个数据框中进行一次接触,然后根据图表时间对它们进行排序,那么我希望得到结果数据框中的所有信息,其中NaN表示缺失值。例如,如果输入上述两个数据框,则我得到的数据框将如下所示:

final
    hadm_id charttime   ce_charttime    hr  sbp dbp ne_charttime    note
0   140694  2121-08-10 20:32:00 NaT NaN NaN NaN 2121-08-10 20:32:00 some text1
1   140694  2121-08-11 12:57:00 NaT NaN NaN NaN 2121-08-11 12:57:00 some text2
2   140694  2121-08-11 15:18:00 NaT NaN NaN NaN 2121-08-11 15:18:00 some text3
3   140694  2121-08-12 19:00:00 2121-08-12 19:00:00 67.0    102.0   75.0    NaT NaN
4   140694  2121-08-12 19:45:00 2121-08-12 19:45:00 68.0    135.0   68.0    NaT NaN
5   140694  2121-08-12 20:00:00 2121-08-12 20:00:00 70.0    153.0   94.0    NaT NaN
6   171544  2153-09-05 15:09:00 NaT NaN NaN NaN 2153-09-05 15:09:00 some text4
7   171544  2153-09-05 17:43:00 NaT NaN NaN NaN 2153-09-05 17:43:00 some text5
8   171544  2153-09-06 10:36:00 NaT NaN NaN NaN 2153-09-06 10:36:00 some text6
9   171544  2153-09-06 14:11:00 2153-09-06 14:11:00 80.0    114.0   50.0    NaT NaN
10  171544  2153-09-06 15:55:00 NaT NaN NaN NaN 2153-09-06 15:55:00 some text7
11  171544  2153-09-06 17:12:00 NaT NaN NaN NaN 2153-09-06 17:12:00 some text8
12  171544  2153-09-06 17:30:00 2153-09-06 17:30:00 80.0    114.0   50.0    NaT NaN
13  171544  2153-09-06 17:35:00 2153-09-06 17:35:00 80.0    114.0   50.0    NaT NaN
14  171544  2153-09-06 17:40:00 2153-09-06 17:40:00 76.0    115.0   51.0    NaT NaN
15  171544  2153-09-06 17:45:00 2153-09-06 17:45:00 76.0    117.0   53.0    NaT NaN

我实际上是手动键入此结果数据框,我想用大熊猫来生成它。最终,我将删除ce_charttimene_charttime并仅保留新创建的charttime列,并在以后适当地填写缺失值。感谢您的任何帮助,如果需要其他信息,请告诉我。

谢谢。

1 个答案:

答案 0 :(得分:0)

  

最终,我将删除ce_charttimene_charttime并仅保留新创建的charttime

您可以在连接两个数据框之前 进行操作,然后可以使用熊猫concat函数将它们附加到单个数据框中。

import pandas as pd
from datetime import datetime

def parse_datetime(strftime):
    datetime.strptime(strftime, '%Y-%m-%d %H:%M:%S')

# here I'm assuming both dataframes share a column `charttime` on the same axis
data1 = pd.read_csv('data1.csv', parse_dates=True, date_parser=parse_datetime)
data2 = pd.read_csv('data2.csv', parse_dates=True, date_parser=parse_datetime)

print(data1.head(10), end='\n\n')
print(data2.head(10), end='\n\n')

data = pd.concat([data1, data2],  axis=0, sort=True)
data.sort_values(by=['charttime'], inplace=True)
data.reset_index(drop=True, inplace=True)
print(data.head(20))

这是上面代码的输出:

   hadm_id            charttime    hr    sbp   dbp
0   140694  2121-08-12 19:00:00  67.0  102.0  75.0
1   140694  2121-08-12 19:45:00  68.0  135.0  68.0
2   140694  2121-08-12 20:00:00  70.0  153.0  94.0
3   171544  2153-09-06 14:11:00  80.0  114.0  50.0
4   171544  2153-09-06 17:30:00  80.0  114.0  50.0
5   171544  2153-09-06 17:35:00  80.0  114.0  50.0
6   171544  2153-09-06 17:40:00  76.0  115.0  51.0
7   171544  2153-09-06 17:45:00  79.0  117.0  53.0

   hadm_id            charttime        note
0   140694  2121-08-10 20:32:00  some text1
1   140694  2121-08-11 12:57:00  some text2
2   140694  2121-08-11 15:18:00  some text3
3   171544  2153-09-05 15:09:00  some text4
4   171544  2153-09-05 17:43:00  some text5
5   171544  2153-09-06 10:36:00  some text6
6   171544  2153-09-06 15:55:00  some text7
7   171544  2153-09-06 17:12:00  some text8

              charttime   dbp  hadm_id    hr        note    sbp
0   2121-08-10 20:32:00   NaN   140694   NaN  some text1    NaN
1   2121-08-11 12:57:00   NaN   140694   NaN  some text2    NaN
2   2121-08-11 15:18:00   NaN   140694   NaN  some text3    NaN
3   2121-08-12 19:00:00  75.0   140694  67.0         NaN  102.0
4   2121-08-12 19:45:00  68.0   140694  68.0         NaN  135.0
5   2121-08-12 20:00:00  94.0   140694  70.0         NaN  153.0
6   2153-09-05 15:09:00   NaN   171544   NaN  some text4    NaN
7   2153-09-05 17:43:00   NaN   171544   NaN  some text5    NaN
8   2153-09-06 10:36:00   NaN   171544   NaN  some text6    NaN
9   2153-09-06 14:11:00  50.0   171544  80.0         NaN  114.0
10  2153-09-06 15:55:00   NaN   171544   NaN  some text7    NaN
11  2153-09-06 17:12:00   NaN   171544   NaN  some text8    NaN
12  2153-09-06 17:30:00  50.0   171544  80.0         NaN  114.0
13  2153-09-06 17:35:00  50.0   171544  80.0         NaN  114.0
14  2153-09-06 17:40:00  51.0   171544  76.0         NaN  115.0
15  2153-09-06 17:45:00  53.0   171544  79.0         NaN  117.0