首先,我导入以下文本文件:
['butterfly' '2' '2' '3']
['butterfly' '3' '3' '3']
['dragonfly' '4' '1' '1']
['dragonfly' '5' '2' '1']
['dragonfly' '6' '3' '1']
['cat' '4' '4' '2']
['cat' '5' '5' '2']
['cat' '6' '6' '2']
['cat' '7' '8' '3']
['elephant' '8' '9' '3']
['elephant' '9' '10' '4']
['elephant' '10' '10' '4']
['camel' '10' '11' '5']
['camel' '11' '6' '5']
['camel' '12' '5' '6']
['camel' '12' '3' '6']
['bear' '13' '13' '7']
['bear' '5' '15' '7']
['bear' '4' '10' '5']
['bear' '6' '9' '2']
['bear' '15' '13' '1']
['dog' '1' '3' '9']
['dog' '2' '12' '8']
['dog' '3' '10' '1']
['dog' '4' '8' '1']]
第一列是动物,第二列是其在字段中的x位置,第三列是其y位置,第四列是其z位置。 我想找到最小/最大Z值以及每种动物的数量,并将所有这些信息保存在新词典中。到目前为止,我已经尝试过:
df = pd.read_csv('ALL_ANIMALS.txt',
delim_whitespace=True,
names={'animal':str,'x':int,'y':int,'z':int}) #load in file
Animal_Data = {}
Animal_Data['Max_Depths'] = {k : max(df['z']) for k in df['animal']} #find max value (depth) for each key (animal)
Animal_Data['Min_Depths'] = {k : min(df['z']) for k in df['animal']} #find min value (depth) for each key (animal)
Animal_Data['number_of_each_animal'] = {k : len(df['z']) for k in df['animal']} #find number of each animal
print(Animal_Data)
但是,我为每只动物得到的最小值/最大值是整个词典的总体最小值/最大值,而动物的数量是词典中动物的总数。像这样:
{'Max_Depths': {'cat': 9, 'elephant': 9, 'camel': 9, 'bear': 9, 'dog': 9}, 'Min_Depths': {'cat': 1, 'elephant': 1, 'camel': 1, 'bear': 1, 'dog': 1}, 'number_of_each_animal': {'cat': 20, 'elephant': 20, 'camel': 20, 'bear': 20, 'dog': 20}}
您知道如何修改代码以从文本文件中获取每只动物的最小/最大和数量吗?谢谢!
答案 0 :(得分:2)
for ((i=0; i<=10000; i++)); do ns part1.tcl Reno Reno $(($i * 0.001)) ${i}.tr; done
返回 all df['z']
个值的值,而不仅返回z
所在的行。您需要过滤数据框。
animal == 'k'
答案 1 :(得分:1)
尽管您要的是字典,但我将提供一个建议,该建议可以利用Pandas DataFrame(因为您已经有一个DataFrame)。您可以使用Pandas groupby和Groupby min和max函数以矢量化的方式完成此任务。
这是一个例子:
>>> df
animal x y z
0 butterfly 2 2 3
1 butterfly 3 3 3
2 dragonfly 4 1 1
3 dragonfly 5 2 1
4 dragonfly 6 3 1
5 cat 4 4 2
6 cat 5 5 2
7 cat 6 6 2
8 cat 7 8 3
9 elephant 8 9 3
10 elephant 9 10 4
11 elephant 10 10 4
12 camel 10 11 5
13 camel 11 6 5
14 camel 12 5 6
15 camel 12 3 6
16 bear 13 13 7
17 bear 5 15 7
18 bear 4 10 5
19 bear 6 9 2
20 bear 15 13 1
21 dog 1 3 9
22 dog 2 12 8
23 dog 3 10 1
24 dog 4 8 1
>>> min_series = df.groupby('animal').z.min()
>>> min_series.rename('Min_Depths', inplace=True)
animal
bear 1
butterfly 3
camel 5
cat 2
dog 1
dragonfly 1
elephant 3
Name: Min_Depths, dtype: int64
>>> max_series = df.groupby('animal').z.max()
>>> max_series.rename('Max_Depths', inplace=True)
animal
bear 7
butterfly 3
camel 6
cat 3
dog 9
dragonfly 1
elephant 4
Name: Max_Depths, dtype: int64
>>> pd.concat([min_series, max_series], axis=1)
Min_Depths Max_Depths
animal
bear 1 7
butterfly 3 3
camel 5 6
cat 2 3
dog 1 9
dragonfly 1 1
elephant 3 4
>>> animal_data_df = pd.concat([min_series, max_series], axis=1)
>>> animal_data_df.to_dict()
{'Min_Depths': {'bear': 1, 'butterfly': 3, 'camel': 5, 'cat': 2, 'dog': 1, 'dragonfly': 1, 'elephant': 3}, 'Max_Depths': {'bear': 7, 'butterfly': 3, 'came
l': 6, 'cat': 3, 'dog': 9, 'dragonfly': 1, 'elephant': 4}}