我对机器学习和对象检测非常陌生。我使用6000张图像训练了一个模型(我正在尝试从CCTV视频中检测事故)。首先,我尝试了SSD Mobilenet,现在该模型速度很快,但是非常不准确。现在,我使用的是faster_rcnn_resnet50_coco,现在我的准确性有所提高,但问题是它现在非常慢。 (我不是在谈论训练缓慢,而是在谈论模型的实际用法是缓慢的。)
SSD Mobilenet的演示:https://imgur.com/gFUOYlx
Resnet 50的演示:https://imgur.com/we8K3Ae
我的规格: 酷睿i7 6500HQ
Nvidia GTX 950M 4GB
16场公羊
我的代码(我只是从tensorflow / models / object_detection修改了object_detection.ipnyb并没有做任何特别的事情): 将numpy导入为np 导入操作系统 导入six.moves.urllib作为urllib 导入系统 导入tarfile 将tensorflow作为tf导入 导入zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
from utils import label_map_util
from utils import visualization_utils as vis_util
import cv2
def AccidentDetector(videofile):
cap = cv2.VideoCapture(videofile)
#MODEL_NAME = 'Accident_Detection25487-resnet'
#MODEL_NAME = 'Accident_Detection42214-resnet'
MODEL_NAME = 'Accident_Detection200000'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
PATH_TO_LABELS = os.path.join('data', 'object-detection.pbtxt')
NUM_CLASSES = 2
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
IMAGE_SIZE = (12, 8)
count=0
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
while True:
ret, image_np = cap.read()
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
for index,value in enumerate(classes[0]):
if scores[0,index] > 0.5:
list1 = [[category_index.get(value)]]
for i in list1:
for j in i:
if j['name'] == 'accident':
'''name = "detections/frame%d.jpg"%count
cv2.imwrite(name, image_np)'''
count = count + 1
cv2.imshow(videofile[0], cv2.resize(image_np, (1280,720)))
if cv2.waitKey(20) & 0xFF == ord('n'):
current = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
print(current)
cap.set(cv2.CAP_PROP_POS_FRAMES,current+50)
if cv2.waitKey(20) & 0xFF == ord('p'):
current = int(cap.get(cv2.CAP_PROP_POS_FRAMES))
print(current)
cap.set(cv2.CAP_PROP_POS_FRAMES,current-50)
if cv2.waitKey(20) & 0xFF == ord('q'):
cv2.destroyAllWindows()
break